; GMm 812 -
: : ‘ SOFTWA
' IVC-MON
f

GMB12 Software Manual

Section

Appendix
1

-2 O o AW

CONTENTS

Command Summary
Genarai

GM812 Hardware/Software
On=board links v |
GM812 Host Interface
GMB12 Control codes

Single byte codes
Escape sequences

Caveats

Inadvertent requests
Nested escape sequences
Escape sequences and Basic
System peculiarities

Keyboards
GM821 keyboard
GM827 keyboard
Defining Function keys
from ths keyboard

Defining Function keys
_from a program

User programs
CRTé'progrqmming
Function key codes
Changing default settings

"SAVEKEYS" listing:

Block graphics

Exémple

. page

w1 -3 o W P

Issue 2 = t4-11-82

15 . }
15 ’
15 FoR
16 '
17

17
17

17 .
i8 . -

20
22
23

.24
25
31
32 "

. GMB12 Software Manual oo IgBue 27 14-11-82

Command Summary

NOTE: S
1+ These are the control codes that the IV(responds to. They are

2.

3.

normally sent to the IVC by a User program or the Host's operating
system.. (See section 4 - PUTVID). o e 1

Programs that request information from the IVC will have to resd the
information back from the IVC. (See section 4 - GETVID).

It may not be possible to isaue commands to the IVC direct from the
keybodrd attached to a system, as the operating system may modify the
characters typed. (eg the standard CP/M line input routine would echo
""" to the IVC if the ESCAPE key were pressed, rather than the
ESCAPE code. -~ However note that this problem can ba solved 'in Gemiy

CP/M systems by selecting "EDIT mode", where all characters aré®

echoed to the IVC exactly as typed).
(Also see section 6.2 - Nested Escape sequences).

General

o7 "G Bell

08 “H Backspace

0T | Linefeed

o M Carriage return

Cursor movement

1C.

1D
1E
1F
1B

Cursor left

Cursor right

Cursor up

N Cursor down - o
3D... <BSC> "=" RR CC Cursor addressing

Additional cursor cparations ‘ .

1B
iB
1B
1B

bl <Esc» et Return cursor coordinates and charascter
44 <EsC>» "p* Delete cursor:

45 <ESCy "g Ensble cursor '

59,. <BSC> "Y".. Define cursor type .

Screen editing

CB
OE
16
17
14

1B
1B
18
1B
1B

K Delete line and scroll up
*N Insert line
‘v Delete character in line
Insert character in line
“Z Clear screen
16 <ESC> Vv Delete character in screen

17 <ESC> W Insert character in screen

25 <ESC> "¢" Delete to end-of-screen

24 <ESC> "*" Delete to end-of-line

54 <ESC> “Z" Return contents of current line

oMB12 Software Manual Iasue 2 14-11-82.

Screen formai

1B M <ESC» ™" Select 80 wide format . .
1B 32 <Esey 2" Select 48 wide forma}t
1B 33 CESC> ™3" . Select user-defined format

iB 46.. <ESC> "F".. Define user format
iB 42 <ESC> "B" Blank screen .
1B 56 <ESCy "V" . Video on (unblank screen).

1B 49 CESCy "I" Video Invert screen
1B 44 <BSC> "I Video normal screen A ,
1B 41 CESCy "A" Alternate character generator is the default

1B 4B <BSE> "N Normal character generator is the default
1B 4D CESC> "M Memory lock on L .
1B 4F <ESCY "o Memory lock off .

Character set

1B 4%.. <ESC> "C".. Define character
4B 63.. <ESC> “"¢".. Define character set

1B 47 ¢ESCY> "G" Conmatruct block graphics character sei
1B 48 <EsC> "H" Duplicate lower character set in upper but invert
.1B 68 <ESC> "n" Duplicate lower character set in upper c/gen *

Block graphics /

1B 47 <ESC> "¢ Construct block graphics character get
1B 52.. <ESC> "R" X Y Reset point XY o T
1B 5%.. <ESC> "s8".. Set point X,Y

1B 54.. <ESC> "T".. Test point X,Y

Kezboard

1B 66.. <ESC> "f' Define Function Key(s) ,

1B 6B CESCY "k" - Test Keyboard status - i
1B 4B . <BSC> "XV Get Keyboard character '

1B 58 <ESC> "X Get one line of input

Miscellansous

1B 57.. <ESC> "W".. High speed Write to display
1B 4C.. <ESC> "L".. Load user program

1B 55 <ESCY "U". . Execute user program
1B 50 <BSC> "P" Return light pen coordinates
1B 76 <ESC> "v" Return version number

oo

GMB12 Software Manual Issue 2 14-11-82

1. GENERAL

The Gemini Intelligent Video Controller (1ve) is an 80~Bus
compatible 8"x8" card that handles the character display for a Gemini
(or Yascom) computer system. The card contains its own on-board
processor (& Z80A) and communicates to the host system via three I/0
ports. As well as handling the video display, the IVC can optionally
support a keyboard as well, providing full buffering and permitting
"type ahedd". In conjunction with the Gemini GM827 keyboard it also
supports programmable function keys. e

By using its own onboard processor the IVC offers a powerful and

fast character display with a multitude of features without absorbing
any of the power of the host system's processor, or reducing the amount
of memory available to programs running on the host aystem.

The IVC accepts 8-bit characters from the host system. All the
standard printable ASCII characters (whose codes are in the range 20H-
TFH), and all the characters for the alternate character set (whose
codes are in the range BOH-FFH), are placed directly into the display at

* the current cursor position. Characters in the range 00-1FH are

interpreted as control characters, and are used to control the extensive
features of the IVC,

2. GHB12 Hardware/Software

In order to provide an interference free display the control
software has been written to only access the display memory in the line
blanking and frame blanking intervals. {ie Only when the CRT controller
is not displaying characters on the screen). There is no real penalty

dinvolved in taking this approach when considering the charactér rate to

the screen (one character every G4us = equivalent to about 156k baud),
but there is a penalty in the time it takes to scroll the screen. (The
Z80 block move instruction LDIR cannot be used). However to, ensure that

the Hoat aystem is not unduly slowed down the Video cand incorporates an

internal buffer, and when a relatively long process (such as scrolling)
is in progress, characters are still accepted from the Hoat system and
are queued in this buffer. Only when the buffer is full will the Host
asystem have to wait. (The buffer size is 64 bytes). "

The character move rate in scrolling has been maximised as far as
possible, and the figures used are based on the Video card Z8OA running
at 4MHz. If the Video card is run at a lower clock rate then some
interference can be expectsd to occur down the left side of the display.

The Video card has 2K of RAM on-board for program workspace. The
control software uses only 1K bytes of this RAM, leaving 1K free.
Provision has been made for the down-loading of a user program to this
area, and its execution. This routine could be a specialised screen-
handling function, or may have nothing whatever to do with the Video
card. In the latter case the Video card can be used as another processor
(which indeed it is) to carry out some parallel processing with the host

system when it is not updating the display. This is covered more fully
in appendix 1.

R —
U

GMB12 Software Manual Issue 2 14-11-82

The Video card will also support.a keybosrd. With the Keyboard
option enabled, the attached keyboard is checked once per displayed
frame. (ie once every 20ms). If any key has been pressed the character
is read and stored in an internal buffer. The Host system can retrieve
characters from this buffer by sending the appropriate "Escape sequence”
(see below). Note that the xeyboard is scanned once per frame
irrespective. of whether the Host system has requested a character. This
means that even if the Host system goes off to perform a lengthy
operation (like inserting a new 1ine into the middle of a large file) no
characters will be lost as they will be queued in the internal keybodrd
puffer, and passed on to the Host system when 1% requests them. -

The IVC supports two character generators., As supplied one of the
character generators is an EPROM, the other a RAM. The character set
held by the RAM has to be set up every time the card is powered up and
can be easily changed at any time under software control, and so it is
referred to as & programmable character ganeraﬁor or PCG. The EPROM
occupies the lower nhalf of the character generator address Space and
generates the‘characters for codes in the range 00~TF (hexadacimal).~The
PCG occupies the upper nalf of the address space and generates the
characters for the godes 80-FF. Thus the value of the most significant
pit of a character goverus which character gengrator is uysed to display

Y

it. Several commands are provided to support the use of the PCG.

i
'

3. On-board Limks = 0T

Two user links are provided on the cafd. Thesa,gre used to set up
the Video card on Power-up. i . . ’

Link 2 : If present the IVC supports a standard Ascii keyboard
guch as the Gemini GM821 59~key keyboard. C.
Tf absent 'the IVC supports the Gemini GM827 87-key
keyboard with programmable function keys. See section
T for detaila. . S

Link 3 ¢ If absent the on-board Keyboard port is ignored.
If present the on-hoard Keyboard port is enabled.

The other links on the bpard should be correctly set. The following
are assumed:i-

' ' >
Vsync connected to Z80A NMI input (Link four) "/}' — b
780A clock set to 4MHz (Link six) L—C . :

A separate Hardware manual on GMB12 is ‘available. It is not
essential for the user, but for those interested in the internal
workings of the IVC it is available through your supplier.)

. : e »J o
Lo T (Cspar-

¥

f

GM812 Software Manual Issue 2 14-11-82

4. GM812 Host Interface

To the host system the video board appears as three I/0 ports. One
port is a bi-directional data port through which bytes are passed to and
from the vidgo card, one port is a read-only Status port which holds the
two hardware 'buffer full/empty’ flags used in data transfers, and the
final port, which is Read/Write, is used to reset the video card's
processor. As the onboard ZBOA is not connected to the 80-Bus reset line
the host system can be reset at any time without disturbing the video
display, or losing the current video card configuration. (The current
sereen format and programmed character set will remain intact).”

NB The latter assumes that the Host's software does not reset the Video .
board while re-initialising the host system. i

Port Dir. Function .
OB1H R/W Data tranafer to/from Video card.
OB2H R/0 Status port for Data registers.

Bit 0 BSet if Write Buffer is full.
Clear if Write Buffer is empty.

Bit 7 Set if Read Buffer is empty.
Clear if Read Buffer is full.

OB3H R/W Accessing Port resets Video card.

Shown below are examples of the simple driver routines that are
required to interface the card. Routines such as these are already
incorporated in RP/M, Gemini CP/M systems, and other software that
directly supports the IVC. (See also Appendix 7). .

’
¥

i PUTVID - Transfer the character in A to the Video card

’
¥y PUTVID: PUSH AP ;Save character .
B B2 PVO: IN A,(0OB2H) ;Read flags
OF RRCA ;Flag to carry
38 FB JR C,BPV0 ;Loop 1f buffer still full
3! POP AF ;Get character back
D3 B our (0B1#),4 ;Put in buffer
] RET ;Done

GETVID - Read a character from the Video card
to the A register

ETVID: IN 4,(0B2H) ;Read flags

DB B2

o7 RICA ;Flag to carry
. 38 FB JR C,GETVID ;Loop if buffer empty
! DB B il 4,(0B1H) ;Read character

c9 RET ;Return with it

!,

GMB12 Software Manual ’ Tesue 2 14-11-82

5. GMB12 Control codes -

The video card responds to a variety of control codes which provide
extensive facilities for control of the card. As well as providing for
the usual character funciions, additional functions are provided
including the ability to down-load another program to the video card's
workspace, and to execute it. :

The commands divide into two types, single byte control codes, and

multiple byte control sequences. The multiple byte sequences all start
with the control code "Escape" (1BH) and so are referred to as "Escape
sequences”. The single byte codes handle. the usual Cursor furctidns,
while the Escape sequences provide the more eldborate features.

NOTE: - ‘ B
1. These are the control codes that the IVC responds to. They are

normally sent to the IVC by a User program or the Host's operating

system. (See section 4 - PUTVID). : .
2. Programs that request information from the IVC will have to read the
information back from the IVC. (See section 4 - GETVID).
3. It may not be possidle to issue commands to the IVC direct from the

keyboard attached to a system, as the operating system may¢modify the

characters typed. (eg the standard CP/M line input routine would echo
“*[" to the IVC if the ESCAPE key were pressed, rather than the

TSCAPE code. - However note that this problem can be solved in Gemini

CP/M systems by selecting "EDIT mode”, where all characters are
echoed to the IVC exactly as typed).
(Also see section 6.2 - Nested Escape sequences). ' -

5.1 /Single byte control codes

Shown below are the single byte control codes and- the corresponding
keyboard characters that generate them. The convention of using a
preceding up-arrovw (*) to designate a control character has been
adopted. Thus backspace (Hex code 08) is generated by typing control/H
which is shown as “H. The cursor movement codes gorrespond to those
generated by the Gemini GMB21 and GMB27 keyboards. The insert/delete

line and insert/delete character codes correspond to combinations of

shift and control and the same cursor control keys. ([] refer to
specific keys on the Gemini kejyboards).

A1l of these codes can be produced directly on the Gemini
keyboards, either directly, or in conjunction with the shift and/or
control keys. {But see NOTE above).

Hex - Kybd Function V

07 “G Bell. Bit 4.on the control port (1025 pin 19) i3 set and
then cleared. This signal may be used to trigger an

audible alarm of some kind, or may be ignored. (See .

Hardware manual).

-

GMB12 Software Manual Issue 2 14~11-82

08

0A

0B

0b

OB

14

“H

*]

[BACKSPACE] :

Destructive Dbackspace. The cursor is moved one position
to the left, and the character now under the cursor ia
overwritien with a space. If the cursor is in the honme
position the code has no effect.

[LINEFEED - GM821 only)

Line feed. The cursor is moved down one line. If it is
already at the bottom of the screen, then the entire
screen is scrolled up by one line, and the bottom line
(containing the cursor) is cleared.

[Control/t on GM821, Shift/t on GMB27]

Delete Line and Scroll up. The line in which the cursor
is currently positioned is deleted, and the following
lines are scrolled up the screen, with a blank line
appearing at the bottom. If the cursor is already on the
bottom line, then this will be cleared.

[rETURN]

Carriage return. The cursor is returned to the start of
the line in which it is currently positioned.

[Control/é on GM&21, Shift/¢ on amMe27] :

Insert line. The line currently holding the cursor, and
all the lines below it, are scrolled down the screen. A
blank line is inserted at the current cursor position.
The bottom line of the display is lost..

[Snift/e]

Delete character from line. The character currently under
the cursor is deleted, and the remaining characters on
the line are shifted left one position. A space is
entered in the last character position of the line.

[snirt/=] .
Insert character in line. A space is inserted at the .
current cursor position. The character under the cursor,
and all characters to the right of it, are shifted one

character to the right. The character at the end of the
line is lost.

Home and clear. The cursor is returned to the Home
position, (not necessarily the top of the screen - see
<ESC> "M“), and the screen cleared from the cursor.

[«]

Cursor left. The cursor is moved left one position. If it
was at the start of a 1ine it is moved to the end of the
preceeding line. It will not move past the Home position.

d

Cursor right. The cursor is moved right one position. If
it was at the end of a line it moves to the start of the
next line. It will not move past the end-of-screen.

GM812 Software Manual’ Tasue 2 14-11-82

i " [t]

Gursor up. The cursor is moved up one line on the:
display. It will not move paat tle "Home" line..

1F " (vl - ‘
Cursor down. The cursor is moved down one line on the
display. If it is on the bottom line of the display, the
code will have nd effect.

5.2 Escape Sequences *

Code sequence Function

1B 16 [<mse> *v]

Delete charascter from screen. The character currently
under the cursor is deleted and all characters to the
right of it, and below it, are shifted 1eft one position.
The character at the start of the next line is moved %o
the end of the line above, and 8o on down the display. A
space is inserted at the end of the bottom line of the
display. ' ‘ . : :

1B 17 [<Esc> “w] o
Insert character in screen. ‘A space is inserted at the
current cursor position. The ‘character’under the cursor,
and all characters to the right and below, -are shifted
one character position to the right. The character at the
end of each line where & shift occurs is moved to the
start of the line below. The character at the end of the
screen is lost. .

1B 25 [<Esc> "%"] ; .
Delete +to end-of-screen. The screen is cleared from
the current cursor position. ' .

1B 24 [<Escy "#"] :
Delete %o and-of-line. The current line 18 cleared from
the cursor position. .

1B 31 [<Esc> ™)~ o
Select 80 wide format. The inbuilt 80-character wilde
screen format is selected. . A

1B 32 [<Ese> "2"])

' Select 48 wide format. The inbuilt 48-character wide
screen format is selected. Note that for a readable
display the variable dot clock (RV1. see Hardware manual)
must be set appropriately. .

1B 33 | [<Esc> "3"]

Select the user-programmed format. (See <ESC> "F"). If
no format has been programmed the default "power-up”
format is used. ‘

GMB12 Software Manual Issue 2 14-11-82

1B 3Devess

1B 3¢

1B 41

1B 42

1B -3 PRI

1B 44

1B 45

[<Esc> "=" RR cC]

Cursor addressing. The cursor is positioned to row RR and
column CC. RR and CC are offset by 20H. ie 1o position to
row 8, column 45 - RR=20H+8 and CC=20H+45, giving a code
sequence of - 1B 3D 28 4D. The top left-hand corner of
the screen has coordinates 0,0. If either of the
coordinates are invalid the cursor position remains
unaltered.

[<Escy "2

Cursor coordinates. The current X,Y position of the
cursor is returned via the IVC data port, together with
the character at that position. They are returned in the
order <{row> <col> <{char>. <row> and <col> are the actual
coordinates (with no offset) and the top lefi-hand corner
of the screen has the coordinates 0,0.

[<msey "av] -

Selects the alternate character set as the default set.
The mab of all characters is complemented before they are
stored in the screen memory. (See also <ESC> "N").

[<msc> "B*]

Blank the screen. The video output from the card is
inhibited resulting in & bdlank screen, bdbut the IVC
continves to receive and process characters as normal.
This allows screen displays to be set up "unseen”, or can
be used to briefly blank the ascreen while the screen
format is changed. (See <ESC> "V").

[<BsC> "0" XX YY.....2Z)

Define a character. This sequence allows & single
character to be programmed into the PCG. The hex code XX
is the ASCII code for the character to be programmed,
which is then followed by the 16 bytes of the dot rows
that will form the character in the order row O through
to row 15. All sixteen must be provided, even if the
display does not require them all. (The standard display
uses ten raster lines per character). By default they
will load to the character pesition in the top most
character generator. However if both character generators
are programmable, then setting the mad of the character
(byte XX above), will result in it being loaded to the
lower character generator. (See alsc <ESC> "¢").

[<mscy "p"]
Deletes the cursor from the display. (See <ESC> "E").

[<msoy "g"]

Enables the cursor. The cursor re-appears on the screen
if it had previously been switched off by <ESC> "D".

WY

e e i

GM812 Software Manual ‘ ' Issue 2 14-11-tc

1B 46caesss

1B 47

1B 48

1B 49

1B 4A

1B 4B

1B 4C....

1B 4D

[<ESC> "F" AA....LL 22) ,

Define screen format. This sequence downloads a setting
for the CRTC %o the video card. AA....LL represent the
twelve bytes that are to be sat in registers 0 to 11 of
the CRTC (see Appendix 2 for appropriate values) and 2Z
is the byte that selects either the crystal oscillator or
the variable oscillator for the dot clock. If ZZ is OFFH
then the crystal oscillator is selected. If it is OO0 then -

the varisble oscillator is selected. Note that data is

only required for twelve of the CRTC's registers, the-
Display start address and Cursor address are added by the
on-board software. The values are only programmed into
the CRTC on receipt of the <ESC> "3" sequence.

[<Escy "¢"] . g ‘
Construct the block-graphics characters in the PCG. The
block-graphics character set is constructed in the upper
character generator at character addresses OCOH-OFFH.

.{See Appendix 6)

s

[<Esc> “u"]
Copy the complement of the contents of the lower
character generator to the upper character. generator. - As
a result setting bit 7 of a character will reault in it
being displayed in inverse video. = v

+

N .

[<Ese> "1"] e .
Display the entire screen in inverse video.’

[<mse> "a*) ‘
Display the entire screen in normal video.

[<escy "x")

Keyboard input. The next character from the keyboard is
returned through the data port. If thers are already
characters stored in the keyboard buffer, then the next
character will be returned immediately from there, other-
wise there will be a delay until a key is pressed. If the
keyboard is not enabled a byte of O will be returned.
(See also <ESC> "k"). ,

[<ESC> "L" LL HH +vvu.] _ '

Load a user routine to workspace ram. This sequence
allows a user program to be loaded to the workspace ram
of the video card (see Appendix 1) '

[<Escy> "u*]

Memory lock on. All lines on the screen above the current
line are "locked” on the display. If the screen scrolls
these lines will not seroll. The "cursor up” key will not
move the cursor into this area, nor will the "Home &
Clear"” code remove them. However the cursor addressing
sequence allows the cursor to be positiened in this area.”
The "memory lock" function allows headings etc to be
placed at the top of the screen, and to be preserved even

11

GMB12 Software Manual Issue 2 14-11-82

1B 4B

1B 47 -

1B 50

1B 52....

1B 53.ses

1B 54.e.s

18 55

1B 56

1B 57au0s

if the display is aubsaquently gerolled or cleared. (See
CESCY "0").

[<Escy "N"]
Normal character set. Characters are stored in the

display as received, Bit 7 is not complemented. (See
<ESC> “"A™).

[<mso> "o*]

Memory lock off. Turns off the memory lock function. (See
<ESCY> "MM).
[<msey “p"]

Returns a pair of coordinates from the light pen. The
coordinates of the selected characifer cell are returned
as <row)> followed by <columnd. (Similar to <ESC> "?",
but no character is returned). Depending on the design of
light pen used these coordinates may need a small
adjustment to arrive at the correct character cell.

[<EsCc> "r" XX YY]
Resetas block graphics point X,Y. Two bytes holding the X

and Y coordinates respectively follow the lead-in

sequence. These bytes include an offset of 20H in a
similar manner to <ESC> "=". Point 0,0 is at the top left
of the screen (and so is addressed by a coordinate pair
of 20H 20H). The maximum coordinate values depend upon
the current screen format. If the.coordinate pair
represents an illegal point then the request is ignored,

[<mscy "s™ xx YY) .
Sets block graphics point X,Y. (See <ESCY "R"uue)e

[<Ese> 1" XX YY)

Test block graphics point X,Y. (See <ESC> "R"... above)
The requested block graphics point is tested. If the
point is reset a byte of 0 is returned, if the point is
set a byte of 01 is returned, and 1f the coordinates were
illegal then a byte of 02 is returned.

[<mscy "u"]

Execute User program. The program previously loaded by
the <ESC> "L" command is executed. (See appendix ! for
details).

[<Ese> "v]

Vid§o. Turns on a previously blanked display. (See <ESC)
IIBII

[<ESC> "W" 10 HO IC HC MM .uv.uss)]

Write to Display. This sequence allows characters to be
moved at high speed direct to the display memory without
any of the normal checks for control characters, and, if
required, without waiting for display blanking before
writing to the screen. This command is useful when it is

12

GM812 Software Manual Issue 2 14-11-82

1B 58

‘Ihs 59440

1B 54

1B 63...

required to update the screen at a very high rate, but it
puts the onus on the user to get the screen format
correct a&s the normal screen formatting characters.
(carriage return, line feed et¢), are treated as normal
printing characters and are placed directly into the
display. The lead-in sequence is followed by a screen
offset address (LO HO - lo byte followed by hi byte).
This 16-bit number represents the offset (in characters)
from the start of the display to the address at which the
characters sre to load. Next (LC HC) comes the 16-bit
byte count of the number of characters to ba loaded. The
next byte, (MM), signifies if the load is to be
‘transparent’ (le characters are only moved %o the
display during the blanking intervals), or 'direct'. If
the byte MM is equal to 'T' (54H) or 't' (74H) the load
will be done transparently, and as a consgquence will not
be as fast. Any other value. results in the load being
immediate, and as a result interference will ocour on the

.screen unless the display is blanked.

[<mscy "x"] ‘

Keyboard line input. Obtain one line of input from the
keyboard connected to the IVC. When this sequence is
received the video card will internally echo characters
from the keyboard to the display until the “return" key
is pressed. When this occurs the contents of the screen
line currently holding the cureor are queued ready for
reading by the Host system. Trailing blanks are removed
from the line, and it is terminated by a carriage-return.
While in.the "line input" mode all the control codes can
be used to move the cursor about the screen and to modify
its contents, (ie On-screen editing can be used), and it
is only when the code for "carriage return" (ODH) is
detected that the mode terminates. If the keyboard is not
enabled a single byte of ODH is returned.

[<BSC> "Y" AA BB]

Define cursor %ype. This command defines the
characteristics of the cursor. Byte AA 1s loaded to
register 10 of the .CRTC controller, and byte BB to
register 11. (See Appendix 3)

[<Escy "z") ,
Returns the contents of the line currently holding the

cursor. Trailing blanks are removed, and the returned .
characters are terminated by & carriage-return.

[<ESC> "e¢" GG XX....2Z)
Load character set. This sequence is used to load a
complete character set to either of the programmable
character generators. The byte GG specifies whether it is
the upper or lower one. If GG=0 then the character set
is loaded to the upper character generator, if it is non=
zero then the load is to the lower character generator
(if pragrammable). XX...2Z are the 2048 bytes that ars tq

-

4%

GMB12 Software Manual Issue 2 14-11-82

{B 664..

1B 68

18 €8

i 76

be loaded. The first sixteen bytes are the rows for

character 00, the next sixteen for character O1... etc.
(See <ESC> "C").

[<ESC> "£" XX YY....Z2]

Define & string for a Function key. This sequence is used
to change the definitions of the function keys on the
extended keyboard, or to request the current definition
table. See section 7.

{<mscy "n"]

Copy the contents of the lower character generator to the
upper character generator. As a result setting bit 7 of a
character will have no visible effect. However this
allows small changes to be easily made %o the standard
character set by modifying & few characters (aee <ESC>
"c"), and using <ESC> "A" to select the new set ag the
default character set. -

{<mse> "x"]

Xeyboard status. The card returns a byte of O if no
charscters are waiting to be read from the keyboard
buffer. If one or wmore characters are waiting, then a
byte of OFFH is returned. The actual characters
themselves are obtained by using the sequence <ESC> "K".

[<escy "v"]

Return version number. The card returns the version
number of the IVC software. A single bytels returned,
with 10H representing version '1.0, 11H representing 1.1,
sees 20H representing version 2.0 and 8o on.

: .

GMB12 Software Manual Issue 2 14-11-82

6. Caveats

6.1 _Inadvertent requests
Jome of the escaps sequences request data from the Video card. (eg
“¢ESCY "?"). If one of these sequences is sent (or typed) by accident,
(perhaps an object program is 1isted by mistake, and part of the code
imitates one of the ssquences), then the Video card could ‘hang up'
waiting for the requested bytes to be read. To prevent this occuring the
routine that transfers bytes to the Host system also checks the incoming
data buffer. If the Host system continues to send bytes to the Video
card then the current output operation is aborted and the Video card
returns to accepting input characters in the normal way.

6.2 Nested escape sequences :

The 1VC software accepts a limited depth (4) of nested escape
sequences. However this only applies to the two character sequences (eg
ESC A), and certain four character sequences (ESC =,S,R and T). This is
done to allow certain of the sequences to be typed on a keyboard
attached to the IVC where the keyboard characters are read by the, host
system and then echoed back to the IVC. This is illustrated below:-

Characters transfered Action i
To IVC From IVC ")
™ =msc ' Escape sequence starts.
K Get & keyboard character.
ESC Escape is typed on the keyboard
and returned to the Hosti.
_ (ESC K terminates)-
ESC Hoat echoes character to IVC.
_ . {Escape sequence starts)
I ESC Host sends start of Keyboard
| input request. Previous ESC
1 ig ‘stacked, new one siarts
. ¢ - - Get a keyboard ‘character
A A is typed on the keyboard and
returned to the Host. ESC K
terminates and previous ESC
reinstated. - - . .
= L Host echees character to IVC.

Alternate PCG now defauli, ES
A now terminates. ' .

However if an escape sequence is actually started then another ESC
charagter will not be recognised until the sequence is completed. (See
below). ’

6.% Escape sequences and BASIC

This section highlights a problem that could oceur if the IVC is
used in conjunction with software that assumes the IVC also supporis a
keyboard. It is unlikely that this problem will be met by anyone writing
programs in assembly language, but it could occur in BASIC as it is easy
to forget exmctly what is happening at the lower systems level.

15

GMB12 Software Manual Issue 2 14-11-82

As mentioned above (in 6.2), once one of the escape sequen
C,e,F,L,¥,Y has started the IVC cannot recognise ancther es

character until the current sequence has finished. The reason for : ﬁ;s V

is that the character ESC may well occur in the data being passed to the
IVC and mo no further checks for any control characters are made until

the requested transfer is complete. The problem that could occur with
Basic is illustrated below:-

1000 REM Define a striped character
1010 PRINT CHR$(27);"C\"; :REM Redefine character "\"
1020 POR I=1 TO 16 : PRINT CHR$(176); : NEXT I .

This would not work because between lines 1010 and 1020 the BASI
interpreter would poll the keyboard to see if the user had typed a

Control/C to interrupt the program. As & result what the system would
attempt to send to the IVC would be:=

ESC €\ BSC k 176 176 176 ...
{1ine 1010) (Poll for *C) (line 1020)

Presented with this sequence the IVC would interpret ESC k as the
Tirst two bytes of the sixteen bytes that will make up the character
definition (as they follow the lead-in ESC 0 \), and then wait for the
next input character. However the Host system's keyboard routine thinks
that it has just requested the keyboard status and so waits for a reply -
from the IVC (having sent the ESC k). The net result is that the system
hangs up with the Host and the IVC each waiting for the other to send
something. The only way out of this impass is to press "Reset". (Note
that the character definition never actually gets sent).

This problem can be avoided by restrudturing the Basic program . 80
that the entire escape sequence is contained within one Print command:~

Use either 1010 PRINT CHRE(27);"C\";CHRS(176);CHRS(1T76);.vuu.
or first put 1t all into a string:- -

1010 PS=CHR$(27)+"C\"+CHRS(176)+CHR$(176)+. ...
1020 PRINT P$;

6.4 System peculiarities
When sending atrings of characters to the IVC as part of an escape
sequence beware of the operating system/High level language!

For example the CONOUT BDOS function in CP/M always polls the
keyboard (looking for a “S) on every character that is output. To avoid

this either include a version of PUTVID in your program, or use function
6 - direct console I/0.

With Microsoft Basic it is advisable to use the WIDTH 255 statement
to set the screen width. If this is not donme you will find that Basic
automatically inserts the carriage return line feed pair (ODH OAH) at
the most inopportune moments. (A well kmown law states that it will be
in the middle of an sscape sequence, and at a point guaranteed to lock
the system up). Also you will find that Basic will expand the character

09 (Ascii TAB) to multiple spaces, and will replace 08 (Ascii Backspace)

by .the three-byte sequence O8H 20H O8H!

s pep

GM812 Software Manual Issue 2 14-11-82

-T. EKEYBOARDS '

The IVC includes an 8-bit parallel port to which a keyboard may be
attached. The interface is for an Ascii encoded keyboard that presents
T=-bits of data, together with a strobe pulse. The software will handle
two keyboard variants, the selection of the appropriate one being
determined by the state of link 2 (See section 2).

7.1 The Cherry Keyboard {Part no GM821)

The Cherry Keyboard is a conventional 59—Key Ascii encoued keyboard
that connects directly to the IVC keyboard port. In addition to the
conventional keys it includes four cursor control keya at the right hand
end of the keyboard.

7.2 The Rotec Xeyboard (Part no GMB27) N

The Rotec keyboard has additional keys in the form of a row of
special function keys along the top of the keyhoard, (labelled FO~¥G and
EDIT), four cursor control keys, and & separate numeric pad to ‘the right
of the main keys. These additional keys may be programmed {via the IVC:
software) to return one or more characters to the host computer svery
time that they are pressed. In order that the IVC can distinguish “these
special keys the Rotec keyboard returns uniqua double~byte codes from
these keys. The IVC software replaces each double-byte dode by a single
character or string of characters from an internal table.. This table is
held in the workspace ram of the IV(C, and may be modifigd at any tinme,
either by program, (using the "ESC f" sequence), or directly from the
keyboard. On Reset an initial table is copied out of the IVCMON EPROM
into the ram. The necessary information is given in appéndix 4 for those
able to program 2732 type EPROMs who wish to change the default strings.

The shift key may alac be used in conjunction with these keys to
produce another set of unique codas.

Each of these keys, with the exception of ahift/EDIT can be re-
defined to produce any character or string of characters required. For
example FO could be set up to hold the string "pip a:=bi**[v]<CR>". The
key definitions may be set up in two ways:- a) By the User at the
keyboard, and b) By program using an 68CADE Bequence.

7.2.1 Defining keys from the keyboard. ; ,
Typing shift/EDIT on -the keyboard will draw the response

#4# Tist/Rdit a Function key **#

If a function key is now pressed, the current definition of
that key is listed on the screen. All control codes in the string
are displayed in the expanded form of “<character> (eg a carriage
return would appear as “M). This is followed by the message:

4% 1ist/Edit complete ##*
The IVC monitor has put this 1nformation directly onto the

screen, NOTHING HAS BEEN SENT TO THE HOST COMPUTER and it is
totally unaware of what has happened.

17

LS

GMB12 Software Manual Issue 2 14-11-82

If instead of hitting & function key shift/EDIT is pressed
again the following string will appear:

#¥¥ Press the function key to be defined, then type in a string #*#*
ol followed by any function key ###

At this point you can select the function key you wish to
redefine. Type it followed by the string you wish to enter. As you
type in the string it will be echoed to the screen, once again with
control characters being expanded to the form “<characterd. NOTE it
is assumed that any character typed is to be part of the string,
thus if you hit "backspace" *“H will appear on the screen andthe

control/H will be entered into the string. If you make a mistake w
you will have to start again.

The entry of a new definition is ended when ahy function key
ls pressed. (No recursive definitions are allowed!). At this point
the following messages will appear: o

¥% New definition entered ##
¥ Ligt/Edit complete ##%

If no string was entered the function key will no longer

return any characters, and if the key is "listed" the following
messgage will appear:

#¥* Punction key undefined %%
¥ List/Edit complete #ew

A above, the Host system I8 TOTALLY UNAWARE of what is
happening, and it is possible to re~define the keys at any time in
this manuner.

7.2.2 Defining keys by software.

A key may be redefined by software using the following eséape
sequence within a User program: 5)

E3C f <code> (string> <byte with msb setd .ev.... .

where <coded> is the unique code identifying a function key.
¢ <atring> is the string of characters to be returned every time the
key is pressed. The new definition is terminated when a byte with
the msb set is encountered. If this byte is a legal keycode (81H~
OBDH excluding 90H and 9BH - See Appendix 3) then & new defiuition

is started, if it is illegal (ie > OBDH) then the escape sequence
is terminated.

Two additional features are included in the escape sequence:
CESC> (> <d> or <BSC> <f> <D> will reset the key definitions to
their default (or power-up) state.
<E3C> <f> <?> will cause the IVC to send to the Host the table of

the current function key definitions. The table is terminated with
the byte OFFH.

GM812 Software Manual Issue 2 14-11—62

NB It is perfectly possible to enter a null string for a key.
definition and effectively disable it. (It will be ignored until
redefined).

If you get too carried away with your‘definitiens you will see the
message:
#% IVC internal error - table overflow ##

This should not normally happen as the table can use up to 512
bytes which gives an average of about 8 characters per key
(assuming the numeric pad is redefined as well). , "

The simple routine SAVEKEYS is supplied (see appendix 5). This
‘is- for setting up COM files holding particular sets of key
definitions. Thus it is possible to easily set up files such as
KPEN.COM and KWS.COM that could be executed before running prograns
such as PEN or WORDSTAR to customise the key settings
appropriately. : - L .

GMB12 Software Manual Issue 2 14-11-82

: APPENDIX 1
¥riting your own programs for the IVC

This Appendix is intended to give general guidelines to anyone who
wishes to writé programs that are intended to execute within the Ive.

The area currently available to user programs is from OE400H to
OETFFH, & total of 1k bytes. The user program is downloaded to the IVC
by the <ESCAPE> "L".. sequence. The lead in is followed by the size of
the progran (1o’ byte, then hi byte), and then the program itself. This
is a similar format to the <ESC> "W" command, but without the offset.
The program is loaded into the workspace ram starting at address OB400H.
Following completion of the load control is passed dback to the IVC
software. The downloaded program is only executed when the <ESC> "y"
sequence is received, at which time a CALL is made to address OBE400H.

General
On the card the vertical sync ocutput of the CRTC .is connected to

the NMI line of the Z80A. As a result the processor is interrupted every
20ns. In response to the NMI the IVC software updates the cursor
registers of the CRTC and also scans the Keyboard port for any
characters. This interrupt can only be disabled by holding the CRTC
permanently ‘reset by writing a O to bit 3 of the control latch (address
OCCOOH). If you wish to leave the display running the following points
should be observed:-

The NMI routine requires 6 bytes of stack.

Any routine that wishes to alter the internal registers of

the CRTC should first synchronise to an NMI to prevent the

loading sequence being corrupted. This is best done by

executing a HALT instruction, exit from the Halt state

being effected on receipt of an NMI by the Z80A. :

.

Mode

The user program can be organised in two ways. One is to be totally
independent of the IVC software, in which case memory and registers can
be used in an indiscriminate fashion and return to the IVC software has
to be via the Reset address of 0. The other is to respect certain
registers (detailed below), in which case routines within the IVC soft-
ware can be called, and & controlled Return can be made to the main
progran leaving the Screen display intact.

Stack

On entry to the user program a limited amount of stack space is
svailable (about 10 bytes - due allowance has been made for the NMI
routice). The current address at the top of the stack is the correct
return address for the routine. So if this amount of stack is adequate
ine stack pointer can be left alone, and the program terminated by a RET
instruction. If not the stack pointer should be saved and a local stack
used for the routine, and the stack pointer reset before the final RET.

Registers

i The alternate regiaster set should not be altered. It contains
c¢riain values that are used by the Restart routines listed below.
Register IY should not be altered. All other registers may be used.

20

GM812 Software Manual Issue 2 14-11-82

Utility subroutines : ‘ .
The following subroutines may be called by the user program:-

RST OsH PUTSCR
Puts the character from register A to memory address (DE).
This is done immediately following a horizorntal sync pulse and
is used to provide transparent access to the screen memory or
the programmable character generator- .

RST 10H GETSCR
Gets a character from (DR) and loads it into register A‘This -
is done in a similar fashion to PUDSCR.

RST 18H SCAN
. . Scans for a waiting character from the Host system. If one is
there it is transfered to the input buffer.(This routine is
. the one called occasionally\by the scrolling routine).,

RST 20H GETCHR .
Gets the next character from the Host system. If the buffer is
in use it gets the next character from there after adding any
waiting one from the interface. The character ia returned in
the A reglster.

RST 30H PUTCHR ‘ .
Transfers the charactar from the A register’ to the Host
system. N v

The contents of the following workspace locations may be of interest to
the program writer. *

OEOD6 Start of Display .
OEODC Current Cursor position -

OEQEC Screen width : '
QEQE2 . Screen height :

21

GM812 Software Manual Issue 2 14-11-82

APPENDIX 2
CRTC Information

Details of the CRTC registers are given in the GM812 Hardware.-
manual. Listed below are the details of the values programmed into the
CRTC in response to the <ESC> 1 and <ESC» 2 sequences.

80 Wide 48 Wide
format format

Register Hex Value

0 NG 4C ; Horizontal total characters -4
1 50 30 ; Horizontal displayed characters : .
2 63 3¢ ; Horizontal sync position =1
(in character units)
5 TP 79 ; Vsync/Hsyne width
4 1B 18 3 V. character lines total -1
5 02 02 ; V. scan lines adjust (raster lines)
6 19 19 ; V. displayed character lines
7 18 138 s V. sync position
8 AO A0 ; Interlace and skew
9 09 09 ; Rasters per character line -1
10 48 48 ; Cursor type & start raster
11 08 08 ; Cursor end raster

Note that the horizontal sync -width in each case has been set to a
larger value than the broadcast standard. This has been done to ensure
that a stable display is produced on most monitors {irrespective of
quality) when the videc on the screen is inverted. (<ESC> I).

Registers 10 and 11 define the appearance of the cursor as shown below.

. m8b 1sb - .
Regiaster 10 «. BPRRRRR Cursor Display Mode
Non-blink
Cursor not displayed
Fast blink (16 field)
11 Slow blink (32 field) ‘
RRRRR is the cursor start raster address

-0 Olw
o —~ ol

; nsb lsb
Regiater 11 «+«.RRRRR

RRRRR is the cursor end raster address

For example to produce a solid slow-blinking character cell for the
cursor the following values should be programmed:-

Register 10 set to . 1 1 00000 ie 60H

Register 11 set to . . . 01 001 ie O%9H

(The raster lines of & character are numbered from O to 9)

22

GM812 Software Manual

Shown here are the hexadecimal codes associated with the various
programmable keys on the GM827 keyboard. They are NOT the codes returned
to the Host system, but are the codes used in the "<ESC> f" sequence to
identify individual keys. The codes are in the range 81H-OBDH. Note that
the following codes do not occur and are treated as illegal by the
“CESC> f" sequence: GOH and 9BH

The function keys:

APPENDIX 3
Function Key codes

14-11-82

shifted i 91 i 92 '\ 95 | 94 | 95 | 96| 97| 8 j XX ;
normal 1 81, 82 i 83 | 84 85 | 86 a7 88 i 8B 4
XBY - o lwvolr lrelvsivales|ve ! ¥l ! EpIT
The Cursor control keys§ .
shifted : 9¢ 3 9D t 98 i 9?,} ;
normal i 8 { 8D | 8E | 8BF
KEY ! Cursor keys H
The Numeric pad:
shifted 2 BO § B i B2 i B3 ;
normal i AO | A1 A2 1 A3
KEY {7 18 19 |+ |
shifted i B4 } B5 ; B6 ; B7 3
normal 1 A4 | A5 | A6 | AT |
KEY P4 15 16 |-}
shifted | BS ;‘B9 | BA | aF |
normal i AB | A9 | AA § AR |
KRY TREREL 1B}
PRp— S— HEE
shifted | B i ; im ;
{ normal t AB | AC | AD i B |
TR
KEY V. o . H

GMB812 Software Manual Issue 2 | 14-11-82

APPENDIX 4
Changing the default Function key gettings

- "

If required the table of default key definitions in the monitor
EPROM can be changed. In order to do this you nust be able to re-program
a 2752_type EPROM. The existing EPROM should be copied to the memory of
the programmer, and then the end of the program in the EPROM should be
located. Currently this is around address 0COOH, Searching backwards
from this point the copyright message "(¢) dei software 1982" should
located. The default table starts immediately following thia‘mesaage.&

The first four bytes of the table are:-

80 1B 90 1B +.uue (In hexadecimal)

ON HO ACCOUNT MUST THESE BR CHARGED otherwise you will find that you
have redefined the ESCAPE key (normal and shifted).

The new strings can be entered in a similar manner to those already

thers. The format is identical to that of the "ESC £..." sequence. (See
section 7.2.2) : ‘

.

GM812 Software Manual Isgue 2 14-11-82

APPENDIX 5
+ Bavekeya

Given here is the source of the SAVEKEYS program that allows a user
to save and reload a specific setting of the function keys. When run it
invites the user to use the shift/EDIT mode to define all the function
keys to his requirements. When this has been done the current function
table is read and written away to disc along with a small program which
will reload it. The program format is for Microsoft's M80 assembler.

If you have a Gemini Galaxy with the .expanded keyboard this program

| m and its source may be found on the CP/M system disk.

.

25

G812 Software Manual Issue 2 14-11-82

<280
title SAVEKEYS program for the IVC & ROTEC keyboard
page 62

This program enables people to set up a custom set

of -atrings for the programmable function keys on the
ROTEC keyboard.

Invoked by "savekeys <named" where <name>.com will be a
.an_executable program that will automatically set up
the Key definitions.

.. W wE WE we wr s

clear equ 1ah i , ‘J
egcape equ 1bh ’
or equ Odh
1f equ Qsh
bdos equ 5
deffch equ 5ch
openf equ 15
clese equ 16
delfil equ 19
write .equ 21
create equ 22
setdma equ 26
aignon: defb " Punction Key File Set-up program Version 0.1",cr,1f,1f
defb g
g0 defb " Use the EDIT key on the Keyboard to set up the wanted"

defdb er,1f

defb " key definitions. When you have every key defined "
defdb "in the",er,1f

~ defd " way you want hit the RETURN key"

erifd: defb er,1f,18,'$’

done: defb 'Key file written$'

noname: defb 'You have forgotten to'include the name of the file'
defb ' that you',cr,1f ‘
defb 'wish to save the function key settings in$'

ambig: defd ‘Ambiguous file names are not allowed$'

exista: defd 'The file slready exists - shall I delete 1it73’

cantd: defd ' cannot delete the filed'

canters defb 'I cannot create the file$'

cantel: defb "I cannot close the file$’

Werr: defd 'Disc is full or a Write error occurred$’

savesp: defs 2
defg 4

atack:

: CR LF

crlf: id de,crlf3

; Print a string

26

- GM812 Software Manual Issue 2 14-11-82

print: 1d c,9
Jp 5

Getvid & Putvid

-

getvid: in a, (0Ob2h)
rlca
3r o,getvid
in a,(0bih)
: ret
@ putvid: push af
. pv0: in a,{0b2h)
rrea
Jr ¢,pv0
pop af :
out (0bin),a
ret "
H Start point - Sign on
atart: 1d {savesp),sp 1Save the stack pointer .
1d ap,stack C - ‘
1d de,signon < 38ign on_ S i/ - .
call print o . ;-

e

Now check that a file has been apecifiéd & make . COM {ype

14 hl,deffeb+1 s
14 &,{hl) ° ;Look for a name -
ep o P
1d de,nonsme +{In case none)
Jr %,8bort ;Abort if so -
14 hl,deffeb+9 . ;Force extension to..
: 1d (n1),'c’ 3+ .COM ‘
inc hl
@ 1d (n1),'o0!
ine hl
1d (h1), '™’
ine hl
1d {n1),0

oy

GHB12 Software Manual

H Check the name is not ambiguous
14 hl,deffch
. 1d be,8
. ld a,'?
cpir
1d de,ambig
ip %,abort sAbort if ambiguous
H See if the file already exists
1d da,deffch
14 c,openf sTry to open it
call bdos
ine & ;There?
ir z,nofile ;No,skip
1d de,exists
call print ;Delete 117 -
wkey: 14 ¢,6
1d e,0ffh
call bdos ;Get reply
and 5fh -
r z,wkey ;Wait if none
cp 'Yt 1 Yes?
jp nz,exit ;No, stop
call crlf
14 de,deffch
1d c,delfil
call bdos ;Delete it
inec a ssuccesful?
14 de,cantd +{In case not)
ir z,abort
H No file - try to Create it
nofile: 1d de,deffch
1d c,create
call bdos
ine & ;Ok?
14 de,canter
jp zyabort

3 Get the keyboard bit done

14 de,go
call print
wait: 14 e,0ffh
1d c,b
call bdos
ep 3
ip z,exit
cp cr

Jr nz,wait

sAbort?

Issue 2

14-11-82

GMB812 Software Manual o i Issue 2 14-11-82

Now read the full table out into memory

-.

14 a,escape
call putvid ‘
1d a,'f" ;Function
call putvid ‘ ‘
14 a,'?'" " '3Send table ; a
call putvid ‘
1d hl,ktable ;Store here
rloop: call getvid ;Get the byte
' 14 (h1),a ;Put in the table
p inc hl ‘ . i
cp Offh swas it the end?
b ng,rioop $N0, CArry on
1d de,keyprog-1 ;Compute length to save
or a -
sbe hl,de
add hl,hl ;H now holds no. of sectors
14 b,h U sMove to B
ine b sAdjust
; Now try to Write the file out I
xor a iClear NR o /
1d (deffob+32),a - S
14 de,keyprog jstart here ‘ .
wloop: push be : : . . .
push de ‘
1d ¢,setdna
call bdos
14 de,deffchd
1d o,write
- call bdos S L
pop hl " ;Get address back
pop be .
O, or a i ~ sSuccessful write?
14 de,werr '
. Jp nz,abort
: 14 de,128 ;Update addreas
add hl,de .
| ex de,hl
| ’ djnz wloop sLoop 1f more
% ; File written - now close it
1d de,deffeh
s 1d c,close '
‘ call bdos
inc a sAny error?
lq de,cantecl)
Jr nz,exit ;No,done
1d de,done
abort: call print ;Print the error message

exit: call crlf

‘-

GM812 Soft{ware Manual . Issue 2 14-11.82

1d sp, {savesp)
ret :

keyprog: ~
s Program~to be written to disc
.phase 100h ;Loads to the TPA

14 a,08Cape ;Load the new table.
_ gall chrout
1d a,'f'
call chrout
1d hl,table)
wrloop: 1d a,(n1) ’ ‘
call chrout
inec hl
cp 0ffh
ir nz,wrlcop
ret
H Character o/p via direct console 1/0
chrout: push af
- push hl
ep Offh ;can't o/p Offh
e nz,ch
1d a,0e0h
chi 1d e,a
14 a,6
call 5
pop hl
pop af
ret
table:
.dephase
ktable: ,
3 - SAVEKEYS will read the existing table in to here .

end start

E G

GMB12 Software Manual . Issue 2 14-11-82

- APPENDIX 6
Block Graphics

The <ESC> G sequence is used to set up a block graphics character
set in the PCG. To odbtain the block graphics each character cell is
divided into six pixels, two unite horizontally by three vertically.
These pixels are turned on and off by setting and resetting six bits in
the character occupying that character cell. To simplify matters the IVC
will manipulate the block graphic characters directly in reaponse to
commands specifying a particular pixel. (<EsC> S,R, and T).~

The block graphics characters are in the range QCOH to OFFH. £
character cell is divided up as ahown below.

W

e

: . T
where O-5 represent the corresponding bit positions in the character:~

. MXXXXXX :

As the pixels are éubdivisiona of a standard character cell the
resolution available with. the block graphics depends upon the currently
programmed screen size. It is Width*2 by Height®3. With 25 lines of 80
characters per line the resolution is 75 pixels vertically by 160
horizontally. With 25 lines of 48 characters per line the reaolution is
75 pixels vertically by 96 horizontally.

31

GM812 Software Manual

Issue 2

APPENDIX 7
Example

14-11-82

Shown below is & simple example of the use of PUTVID and GETVID.:

; Simple demonstration program to get a character from
; the keyboard and to echo it to the screen.

escape

loop:

3 we -

’
putvid:
pvO:

equ 1bh

14 a,88CaD0

call putvid
14 &K'
call putvid
call getvid
cp Q3

ir z,exit
call puivid
ir loop

push af

in a,(0b2h)
rrca

jr c,pv0
pop af

out (Obth),a
ret

N
¥
.
]
.
1
.
¥
.
L
.
¥
.
¥

Get a character from the keyboard

ESC K gets a character

Read the typed character
Was it a Control/C?

Yes, break out of this loop
¥o, echo to the screen
«..then repsat

PUTVID - Pranafer the character in <A> to the IVC

Save the character
Check "ready" flag
Move flag to carry
Wait if buffer is full
Get the character back
Send it out

Done :

i GETVID - Read a character from the IVC to <A>

3
retvid:

.
¥

in a,{0b2h)
rlca
jr c,getvid
in a,{0bin)
ret

.
’

.
3
.
¥
.
¥
.
¥

Read the flag register
Move, flag to carry
Wait if the buffer is empty

... else read the character..

...and return with it.

. ; Done - return to operating system

H
exit:

,

...code to return goes here... (eg JP O for CP/M)

32

THE COPYING OF THIS DOCUMENT 1S
FORBIDDEN FOR ANY REASON WHATSOEVER
WITHOUT WRITTEN CONSENT FROM GEMINI
MICROCOMPUTERS LTD. 1982

(@ COPYRIGHT GEMINI MICROCOMPUTERS LTD. 1982

G Gk L o N A

