ISSUE 2

GM832

VG
(SUPER VIDEO GONTROLLER)

SOFTWARE MANUAL

23:07:84

10.

i A.

@ Appendices

TABLE OF CONTENTS

Command SUMMATY e sossvsssssascssnnsssrraresnsssssssasssssssd

Generaliisiesiecanssssnesssnnrrnnnmannnanssssssanssnsonsnaald
Hardware‘---.----»»».o+a*+.--++----i¢¢¢¢-..................ﬁ

EﬂftwarE+---+----,-..,,..,‘..,.....................,.‘.....S

4.1 Alphanumeric mode.sesssrrsasssssasrrrsorrasscassnsssssl
b.2. Graphics mode..seseescsscssssnnsssrassnsansassrasnnnsnld

On-board switches and links---I---1!iloit-;-a--.+aau¢..¢1¢10

GMB32 Host Interface.rsrrrrscessrussossasasnrsssasasnssanasll

GMB32 Control CodeSeersssraassansassssssassassasneannennnssl?
7.1. Single byte control codeS cecevrvrvanrernarranssasansl?
7.2, Escape SeqUencCeSssssssscssssssrsrsssassssnssnssrsnsnslé

sVC feature&-:----:-:»-a--;4-+;.aa+;..*...........---.‘...23
8.1. Software Clock.e.sseerinsssucssnsarsnersrrrnnrrnssnassndd

CAVEALSrassrasassssssssttssssosssanssannnsannnsss TR Ty
9.1. Inadvertent requUesStSesessasssssssssossssrrarsassasanaald
9.2. NHested escape SEQUENCES.ssevscasssnrorsnrrrrssranasssld
9.3, Escape sequences and BASIC..icvsevennrnrnnnrnnranarsald
9.4. System peculiaritieS.cceeevuucerersronnnrrrrasnsnsessdd

KﬂybﬂﬂrdS&*+++u++---++---+¢--ffioqvp-.--‘---‘---:--::-----26
10.1. The Gemini GME2I keyboard...:veeieaeaaaanaa... P —{
10.2. The Gemini GM827 and GM852 keyboards.-..cevrveroresa2B

10.2.1. Defining keys from the keyboard...veevuiaveas26

10.2.2. Defining keys by software..«cseecercrnrnnnss27
10“2'3" KEYGHEIN.‘.‘l“‘Q‘"“‘ﬁ!““!!!l’l’!lllI!II’I‘IIIC‘EB

Writing vour own programs For the SVC0.ssacacascccsccssasss 30
A.l. General:---a---.a-;.......................,*.........30

A.2. Modesssow... R R e L e R e R el te T Rl = L=l l= = R ==L e R LR =R h = e e e R
e T S S N A AN O o a0 o080 aea N easHacabon e oo Bans |
A.b. BegloterSsscessssssvonnsonnnnrsnssnancsnanassnnsnnnsanil
A.3. Utility subroutines..ceviisssrsscscasnrasssnacanansrsil

GRTC Informatiﬂu-..;;;-++.4¢+a¢¢4..a..........*....-...*..32
Function KEF codesillllilll?llllllll#tt#&#ttii*+i|¢414-v--33
ﬂhﬂﬂging the dEfﬂult Function kE? EEttiﬂgs--i*i-tii--iiitiB#

Block Gr&phiﬂﬂl---14ttiriattti|ttta---to-t-oo+qqoo--o-----35

POTVID & GETVID Example-»--aa»--;a»;-+a-;..¢;-++;.*.......36

-1 -

1. Command Summary

HUTE:

l.

2.

3.

HEX

These are the control codes that the SVC responds to. They are normally

sent to the SVC by a User program or the Host’s operating system. (See
section & - PUTVID.)

Programs that request information from the 5VC will have to read the
information back from the SVC. (See section 6 - GETVID.)

It may not be possible to issue commands to the SVC direct from the
keyboard attached to a system, as the operating system may modify the
characters typed. (e.g. the standard CP/M line input routine would echo

""[" to the SVC if the ESCAPE key were pressed, rather than the ESCAPE
code. However note that this problem ecan be solved in Gemini CP/M systems
by selecting "EDIT mode", where all characters are echoed to the SVC
exactly as typed).

{Also see section 9.2 - Nested Escape sequences).

ASCII DECIMAL COMMAND (Special key provided)

General

a7
08

QA
an

7 Bell - sound on-board buzzer
Backspace (BACK SPACE)
10 Linefeed

13 Carriage return {(RETUEN)

2ol dd

Cursor Movement

ic
I
iE
IF
1B
1B

, 28 Cursor left (=)
~] 29 Cursor right (=)
~ 30 Cursor up €)]
-/ 31 Cursor down (N
ac <ESC> "L 27 12 Cursor home
AD... <E8C» "=V... 27 bli.. Cursor addressing

Additional cursor operartion

LB
1B
1B
1B

aF <E5C> """ 27 63 Return cursor coordinates and character
44 <ESC> "D" 27 68 Delete cursor

45 <ESC» "E" 27 B9 Enable cursor

509... <ESC» "Y"... 27 B89... Define cursor type

Screen editing

OB
OE
L6
17
1A
LB
1R
LB
1B

K it Delete line and seroll up (SHIFT/4)
“N 14 Insert line (SHIFT/})
-V 22 Delete character in line (SHIFT/-==)
23 Insert character in line (SHIFT/—=)

“F 26 Clear screen & home cursor

is <ESC> TV 27 22 Delete character in screen

17 <ESC>» "W 27 23 Insert character in screen

25 <ESC> """ 27 37 Delete to end-of-screen

24 <ESC> &M 27 42 Delete to end-of-line

Screen format

1B 31 <ESC>
1B 32 <ESC>
IB 33 <ESC>
1B 34 <ESC>»
IB 46... <ESC>
IB 70... <ES8C>
1B 42 <E5C>
LB 58 <ESC>
LE 49 <E5C>
1B 44 <ESC>
IB 41 <ESC>
1B 4E <ESC>»
1B 4D <ESC>
LB 4F <ESC>
Lharacier set

IB &7... <ESC»
IB 43... <ES5C>»
1B 63... <ESC>»
B 62... <ESC»
IB 47 <ESC>
LB 48 <ESC»
1B 68 <ESC>

Block graphics

LB 47

1B 52...
lB 53...
1B 54...

25b6x256 praphics

<E5C>
<EE8C>
<ESC>
<E&C>»

LB 52

1B 532...
1B 54...
1B 6C...
].B E'F“ii
1B 6D...
1B 77

1B 64...

Keyboard

IB 66...
IB 66 b4
1B &6 3F
IB 6B
IB 4B
iB 58
IE 3E.-.

<ESC>
<ESC>
<ESC>
<E8C>»
<ESC>
<E3C>
<ESC>
<ESC>

LHEB0U>»
<E8C>
<ESC>
<ESC»
<ESC>
<ESC>»
<ESC>

lli'ﬁ

“2"

II3II

IFAII

1IFII .
1
IIEII
I1-|‘rlr
IIIIF
ITJ"
1I‘AII
PTHIT
TIHIF
"G"

e 81

H‘GII
i _ 1
np, ..
1IG1I
IIHII
Tlh1l

iiGi:'
!IRII .
Hsll e

S

i-IRii .
||S|r e
HTIP .
Sl e

L]
-

o

llmll.

AT
”dll e

Y

LS GE
i'lf'DTl
1If?r1
Irkll
r1K1l

L il
Mare

27
27
27
27
27
27
27
27
27
27
27
27
27
27

27
27
27
27
27
27
27

27
217
27
27

7
27
27
27
27
27

27

27
27
27
27
27
27
27

44
50
51
52
70. ..
112...
66
B6
3
74
%]
78
77
79

103. ..
6744
99...
98...
71

72

104

71

B2.s.
83...
Bh...

Bl
33-:,
8‘!-!-#1:41

108...
111aas

109...

119
100...

...
102 o8
102 63
107

75

88
62...

Select 80 wide format

Select 40 wide format

Select user-defined format

Select graphice mode

Define user format

Select display/update partition
Blank screen

Video on (Unblank)

Video Invert screen

Video normal screen (non-inverted)
Alternate char. generator is default
Normal character generator is default
Memory lock on

Memory lock off

Set language

Define character

Define character set

Read back character set

Construct block graphics character set

Copy normal char. set to alternate & invert
Copy normal char. set to alternate char.gen

Consiruct block graphics character set
Reset point X,Y

Set point X,Y

Test point X,¥Y

Reset point X,Y

Set point X, ¥

Test point X,Y

Draw/Erase /Complement 2 line
Draw/Erase/Complement a circle
Move cursor to X, Y

Fill a polygon

Graphics screen dump

Define function keyis)

Reset function key definiiions

Return current function key definitions
Test keyboard status

Get keyboard character

Get one line of input

Download soft-key display

Clock

IB 74... <ESC> "
1B 74 3D..<ESC> "
1B 74 45 <ESC>»
LB 74 44 <ESC»
1B 74 3F <ESC>
Miscellanesous

1B 54 <ESC>
I8 Al... <ESC>»
I8 57... <E3C>
1B 4C... <ESC»
LB 55 <ESC>
1B 50 <ESC>
IB 7& <E3C>

=

"tE"

] tD"
"t ?!‘I

WAl
[T]
I'I'I‘Ill.
IILIT‘
'I'I'HF'I'
IIPII

M, .1

£t

LR

- aa

27
27
27
27
27

27
27

27
27
27
27
27

1l6...
116 61.
116 69
116 68
116 63

50
L

B?i‘i
Thuas
85

80
118

Set clock time

Position clock display
Enable clock display

Disable clock display
Return clock time

Return contents of current line
Set/reset attributes

High speed write to display
Load user program

Execute user program

Return light pen coordinates
Return SVC-MON version number

|
]
i
]
]
]
1
|

2. General

The Gemini Super Video Controller (SVC) is an 80-BUS compatible 8"x8&"
card that handles the character display for a Gemini (or Nascom) computer
system. It is an enhanced wversion of the the earlier Gemini Intelligent Video
Controller (IVC), and is upwards compatible with it, supporting all the
functions of the earlier card. The SVC contains its own on-hoard processor (a
Z80B running at 6MHz) and communicates with the host system via three I/0
ports. As well as handling the video display, the SVC can optionally support a
keyboard as well, providing full buffering and permitting "type ahead". In
conjunction with the Gemini GM827 or GMB852 keyboards it also supports
programmable function keys.

By using its own on-board processor the S5VC offers a powerful and fast
character display with a multitude of features without absorbing any of the
power of the host system’s processor, or reducing the amount of memory
available to programs running on the host system. In addition the SVC supports
a 256 ® 256 bit-mapped graphics mode.

The SVC accepts B-bit characters from the host system. ALl the standard
printable ASCII characters (whose codes are in the range 20H-7FH), and all the
characters for the alternate character set (whose codes are in the range 80H-
FFH)}, are placed directly into the display at the current cursor position.
Characters in the range 00-1FH are interpreted as control characters, and are
used to control the extensive features of the SVC.

3. Hardware

The SVC uses an on-board Z80B running at 6MHz to control the display in
response to commands passed to it by the Host system. The display memory is
shared between the on-board ZB0B and the display controller, and a hardware
based appreach is used teo ensure that there is no conflict between the two
when accessing the shared memory. (This hardware arbitation scheme provides a
significant speed increase when compared to the software arbitration used in

the earlier IVC.) This results In an interference-free display that can be
updated at a high rate.

The Video card has 2K of RAM on-board for program workspace. The control
software uses only 1K bytes of this RAM, leaving 1K free. Provision has been
made for the down-loading of a user program to this area, and its execution.
This routine could be a specialised screen-handling function, or may have
nothing whatever to do with the Video card. In the latter case the Video card
can be used as another processor (which indeed it is) to carry out some
parallel processing with the host system when it is not updating the display.
This is covered more fully in appendix A.

The Video card will also support a keyboard. This may be either =
keyboard with a parallel interface (e.g. GMB27) or a keyboard with a serial
interface (e.g. GM85258). Whenever a key on the attached keyboard is pressed,
the resultant character is read and stored in an internal buffer. The Host
system can retrieve characters from this buffer by sending the appropriate
"Escape sequence” (see below). Note that the keyboard character is captured
irrespective of whether the Host system has requested a character. This means
that even if the Host system goes off to perform a lengthy operation (like
inserting a new line into the middle of a large file) no characters will he
lost as they will be quewed in the internal keyboard buffer, and passed on Lo
the Host system as and when it requests them. The keyboard buffer will hold up
to 64 characters from the keyboard.

8k

ok

ak

2k

Ol

40-wide display

Alternate
Character
Generator

Standard
Character
Generator

e ——

| 40x25 Display |
| Partitiom 3 |
[
| 40x25 Display |
| Partitiom 2 |

| 40x25 Display |
| Partition 1 |
| e |
| 40x25 Display |
| Partition 0 |

80-wide display

Alternate
Character
Generator

Standard
Character
Generator

|
|
!
80x25 Display |
Partition 1 |
|

|

|

|

80x25 Display |
Partition 0 |

- -

Fig. Display memory image

The 5VC display memory is Bkbytes in size, and its usage varies with the
selected display mode. The various standard modes are illustrated below:

Graphiecs display

| == |
I |
| |
| |
| |
| |
| |
| |
! |
| |
| Single |
| - Partition |
| supporting |
| 256 = 256 |
| resolution |
| |
I |
| |
I |
| |
| |
| |
| |
| |
| |

o ' o R L

4. Software

The 5VC monitor is a development of the IVC monitor, which has been
extended to cover the enhanced hardware features of the SVC. As such it is
upwards compatible with the IVC, and all the Control and Escape sequences of
the IVC are supported by the SVC. In order that systems and application
software may distinguish between the IVC and the SVC, the first release of the
SVC software is version 4.0. The IVC software currently stands at version 2.1,
and, although the IVC is now discontinued, a future release of the software is

anvisaged which will incorporate some of the enhancements present in the 3SVC
monitor.

With 8k of display memory available, various display modes exist:
4.1. Alphanumeric mode

In alpha mode the 5VC supports multiple display partitions (or windows)
together with a programmable character generator that supports all possible
256 characters - 128 in the main (normal) character generator, and 128 in the
alternate character generator. (Note that characters from both character
generators may be displayed simultaneously.) In addition variocus attributes,
(blink, half intensity, half-tone background) are supported.

The display windows, (2 in 80 character/line mode, &4 in &40 character/line
mode), are fixed, and the window that the SVC is displaying on the screen, and
the window that the SVC is writing characters into, may be set independently
under software control. Using this feature a "Help menu" could be set up in an
alternative window, and switched to instantly whenever required.

The initial character set that is loaded into the programmable character
generator is held within the monitor ROM. The basic character set (English)
can be modified to suit various foreign languages, and the selection is made

by 3 on-board switches. If the required language is not available then, as on
the IVC, the complete character set may be downloaded by a user program.

OUn power-up the main character generator is initialised with the selected
character set, and the alternate character generator is loaded with the
inverse of the main set. Thus, until the initial settings are modified by
software, outputting an ASCIT character with its most significant bit (msh)
set to the SVC will result in that character being displayed in inverse video.

The SVC supports four character attributes that are “switched on’ by
seliing the most significant bit of a displayed character. Under software
control the effect of the msbh can be set to be any combination of the
available attributes. The four character attributes are:

1) Use the alternate character generator. (Normally used to provide
inverse wvideo).

2} Provide a half-tone background to the character.

3) Display the character in reduced intensity.

4} Blink the character.

NOTE: As only one bit is available as an attribute bit, all characters with
this bit set will display the same set of attributes.

4.2. Graphics mode

In graphics mode the SVC offers a 256 x 256 resolution display. The
software supports this mode with the basic functions of pixel set, reset and
test, together with various graphice primitives such as line and circle
drawing, and a powerful polygon fill function. It also supports a limited text
facility using the default English character set from the monitor EPROM. The
full range of the alpha-mode escape sequences are not supported in this mode,
although a few (e.g. Cursor addressing) are.

Although the graphics screen runs with 8-bit resolution, the SVC software

works internmally with 16-bit coordinates. As a result any plots that run off
the screen do not wrap-round, but will re-appear in the correct place when

they come back within the bounds of the display coordinates. The origin (0,0)
is at the bottom left of the screen.

as follows:

2
On
ON
ON
o
OFF
OFF
OFF
OFF

Note that there are links on the SVC which need to be set according to
the type of keyboard connected. (Serial or parallel interface.) Details of
these links can be found in the optional SVC Hardware Manual.

SWITCH

3 &
O ON
ON OFF
OFF ON
OFF - OFF
O8N ON
oM OFF
OFF ON
QOFF OFF

5. On-board switches and links

A four-pole DIL switch will be found on the SVC. This is used to define
the keyboard in use, and the default character set. The switches should be set

English
Swedish
Danish
German
French
Usa
English
English

Fig. Selection of character set

Switeh 1
OFF Keyboard has function keys. (e.g. GMB27 or GMESZ.)
ON Keyboard has no function keys. (e.g. GM&21.)

J

&

1

6. GMB832 Host Interface

To the host system the video board appears as three 1/0 ports. One port
is @ bi-directional data port through which bytes are passed to and from the
video card, one port is a read-only Status port which holds the two hardware
‘buffer full/empty’ flags used in data transfers, and the final port, which is
Read/Write, is used to reset the video card’s processor. As the onboard Z80B
{s not connected to the 80-BUS reset line the host system can be reset at any
time without disturbing the wvideo display, or losing the current wvideo card
configuration. (The current screen format and programmed character set will
remain intact.)

H.BE. The latter assumes that the Host’s software does not reset the Video
board while re-initialising the host system.

Port Dir. Function
DORIH R/W Data transfer to/from Video ecard.
OB2H R/O Status port for Data registers.

Bit 0 Set if Write Buffer is full.
Clear if Write Buffer is empty.

Bit 7 Set 1f Read Buffer is empty.
Clear if Read Buffer is full.

UB3H AiW Accessing Port resets Video card.

Shown below are sxamples of the simple driver routines that are required
to interface the card. Routines such as these are already incorporated in
RP/M, Gemini CP/M systems, and other software that directly supports the SVC.
{See also Appendix F.)

3

i PUTVID - Trapmsfer the character in A to the Video card

F5 PUTVID: PUSH = AF ;8ave character
DE B2 PVO: IN A,(0B2H) ;Read flags
oF RRCA ;Flag to carry
38 FB JE C,BV0 ;Loop 1f buffer still full
Fl POP AF ;Get character back
D3 Bl ouUT {0OB1H),A ;Put in buffer
c RET :Done
: GETVID - Read a character from the Video card
§ to the A register
k]
DB BZ GETVID: IN A,(0B2H) ;Read flags
07 RLCA ;Flag to carry
38 FB JR C,GETVID ;Loop if buffer empty
DE Bl N A,(OBIH) ;Read character
9 RET ;Return with 1t

- 11 =

7+« GHM832 Control codes

The video card responds to a variety of control codes which provide
extensive facilities for control of the card. As well as providing for the
usual character functions, additional functions are provided including the

ability to down-load another program to the video card’s workspace, and to
execute it.

The commands divide into two types, single byte control codes, and
multiple byte control sequences. The multiple byte sequences all start with
the control code "Escape" (1BH) and so are referred to as "Escape sequences'.
The single byte codes handle the usual Cursor functions, while the Escape
sequences provide the more elaborate features.

NOTE:

l« These are the control codes that the SVC responds to. They are normally
sent to the SVC by a User program or the Host’s operating system. (See
section & - PUTVID.)

Z. Programs that request information from the SVC will have to read the
information back from the SVC. (See section 6 - GETVID.)

3. It may not be possible to issue commands to the SVC direct from the
keyboard attached to a system, as the operating system may modify the
characters typed. (e.g. the standard CP/M line input routine would echo
"“[" to the SVC if the ESCAPE key were pressed, rather than the ESCAPE
code. — However note that this problem can be solved in Gemini CP/M systems
by selecting "EDIT mode", where all characters are echoed to the SVC
axactly as typed).

(Also see section 9.2 - Nested Escape sequences).

7.1. Single byte control codes

Shown below are the single byte control codes and the corresponding
keyboard characters that generate them. The convention of using a preceding
up-arrow (7} to designate a control character has been adopted. Thus linefeed
(Hex code 10) is generated by typing control/J which is shown as ~J. The
cursor movement codes correspond to those generated by the Gemini GM827 and
GM852 keyboards. The insert/delete line and insert/delete character codes
correspond to combinations of the shift key and the same cursor control keys.
{[]1 refer to specific keys on the Gemini keyboards).

All of these codes can be produced directly on the Gemini keyboards,
gither directly, or in conjunction with the shift and/or control keys. (But
see NOTE above).

Hex ASCII Function
07 G Bell. Sounds the on-board buzzer.
08 “H [BACKSPACE]

Destructive backspace. The cursor is moved one position to the
left, and the character now under the cursor is overwritten
with a space. If the cursor is in the home position the code
has no effect.

OB

1

JE

i7

1a

in

iF

"

Line feed. The cursor is moved down one line. If it is
already at the bottom of the screen, then the entire
screen 1s scrolled up by one line, and the bottom line
{containing the cursor) is cleared.

[Shift /4]

Delete Line and Scroll up. The line in which the cursor is
positioned is deleted, and the lines below are scrolled up the
screen, with a blank line appearing at the bottom. If the
cursor is on the bottom line, then this will be cleared.

{RETURN]
Carriage return. The cursor is returned to the start of the
line in which it is currently positioned.

[Shift /4]

Insert line. The line holding the cursor, and all the lines
below it, are scrolled down the screen. A& blank line is
inserted at the current cursor position. The bottom line of the
display is lost.

[Shift /=]

Delete character from line. The character currently under the
cursor is deleted, and the remaining characters on the line are
shifted left one position. A space is entered in the last
character position of the line.

(Shift f—=]

[nsert character in line. A space is inserted at the current
cursor position. The character under the cursor, and all
characters to the right of it, are shifted one character to the
right. The character at the end of the line is lost.

Home and clear. The cursor is returned to the Home position,
{not necessarily the top of the screen - see <ESC> "M"), and
the screen cleared from the cursor.

{=]

Cursor left. The cursor is moved left one position. If it was
at the start of a line it is moved to the end of the preceeding
line. It will not move past the Home position.

(=]
Cursor right. The cursor is moved right ome position. If it was

at the end of a line it moves to the start of the next line. It
will not move past the end-of-screen.

4
Cursor up. The cursor is moved up one line on the display. It
will not move past the "Home" line.

iy

Cursor down. The cursor is moved down one line on the display.
If it is on the bottom line of the display, the code will have
no effect.

7.2. Escape Sequences

Code seguence

1B

IB

LB

18

I8

B

IB

I8

g

0c

14

17

23

24

31

32

33

34

Function

[<EsC> ~L]
Cursor home. This sequence moves the cursor to the home
position at the top left of the screen.

{<E5C> V]

Delete character from screen. The character currently under the
cursor is deleted and all characters to the right of it, and
below it, are shifted left one position. The character at the
start of the next line is moved to the end of the line above,
and so on down the display. A space is inserted at the end of
the bottom line of the display.

[<ESC> "W

Insert character in screen. A space is inserted at the current
cursor position. The character under the cursor, and all
characters to the right and below, are shifted one character
position to the right. The character at the end of each line
where a shift occurs is moved to the start of the line below.
The character at the end of the screen is lost.

[<ESC> "%
Delete to end-of-screen. The sereen is cleared from the current
cursor position.

[<ESC> "#"]
Delete to end-of-line. The current line is cleared from the
cursor position.

[{ESE} Ill rl]
Select B0 wide format. The inbuilt 80-character wide screen
format is selected.

[<ESC> 'f2")
Select 40 wide display format. The in-built #40-character wide
screen format is selected.

E<ESE> Il‘3l1‘l
Select the user-programmed format. (See <ESC> "F'".) 1f no

format has been programmed the default "power-up" format is
used .

[<EBC> 4™

Select Graphics mode. The SVC is switched into "Graphics mode"
where the display now supports a pixel graphics screen offering
a resolution of 256 x 256. Characters can still be written to
the screen, but the display only supports 32 characters per
line, and the English character set will always be used.
Individual character attributes are not supported, and nor are
most of the character orientated Escape sequences. (e.g. Clear-
to—end-of-line is not supported.)

o 1B 3D.....
iB 3E...
W
iB 3F
| 1B 4l
iB 42

[<ESC> "=" RR CC]

Cursor addressing. The cursor is positioned to row RR and
column CC. RR and CC are offset by 20H. i.e. to position Lo row
8, column 45 - RR=20H+8 and CC=20H+45, giving a code sequence
of - 1B 3D 28 4D. The top left-hand corner of the screen has

coordinates 0,0. If either of the coordinates are invalid the
cursor position remains unaltered.

{<ESC> ">" NN ..vusaa 00]

Dowload and set a “soft key” display. This allows a defined
number of lines to be locked at the bottom of the screen. These
lines will not be scrolled or cleared during the normal use of
the display. Optionally the data for the locked lines may be
included in the Escape sequence.

The byte NN specifies how many lines are to be locked, where NN

= the number of lines + ASCII “0° (30H). i.e. NN = "3’ (33H) is
a request for 3 lines to locked. If NN ="0°, or is out of the
range of the screen, then that 1s taken by the SVC as an
instruction to unlock the bottom lines of the display, and the
Escape sequence terminates. However, if NN represents a valid
number of lines, then all following bytes received by the SVC
will be down-loaded sequentially into the locked area. The load
is terminated when either the area is full, or a NULL (0) is
received.

For example this Escape sequence can be used to set up a "soft
key” display area at the bottom of the screen to show the
current definitions of the programmable function keys on the
Gemini Keyboard. Note that control characters in the range 00-
IFh are not normally displayed by the 5VC, so this part of the
character set could be re-programmed to suit the display, and

the appropriate control characters (excluding 00) downloaded as
part of the ESC > ... sequence.

[<ESC> "7")

fursor coordinates. The current ¥X,¥Y position of the cursor is
returned via the 5VC data port, together with the character at
that position. They are returned in the order <row> <col>
<char>. <row> and <col> are the actual coordinates (with no

offset) and the top left-hand corner of the sereen has the
coordinates 0,0.

[{ESG:’ IIﬁﬂ]
Selects the alternate character set as the default set. The msh

of all characters is complemented before they are stored in the
screen memory. (See also <ESC> "N'.)

[<ESC> "B")

Blank the screen. The video output from the ecard is inhibited
resulting in a blank screen, but the SVC continues to receive
and process characters as normal. This allows screen displays

to be set up "unseen", or can be used to briefly blank the
screen while the screen format is changed. (See <ESC> "W'7.

1B 43.....

1B 44

IB 45

1B 4Bacsasea

1B 47

Is 48

[<ESC> "C" XX YY.....ZZ]

Define a character. This sequence allows a single character to
be programmed into the character generator. The hex code XX is
the ASCII code for the character to be programmed, which is
then followed by the 16 bytes of the dot rows that will form
the character in the order row 0 through to row 15. All sixteen
must be provided, even if the display does not require them
all. (The standard display uses ten raster lines per
character.) By default they will load to the appropriate
character position in the alternate character generator. (The
characters which are displayed by codes in the range B0H-FFH,
128-255 decimal.) However if byte XX already has its MSB set
the corresponding character in the normal character generator
will be programmed. (Characters in the code range O00H-7FH, O-
127 decimal.) See also <ESC> "¢'.

[<ESC> "D"]
Deletes the cursor from the display. (Sees <ESC> "E".)

{{ESG} HEII]

Enables the cursor. The cursor re-appears on the screen if it
had previously been switched off by <ESC> '"D'".

[<ESC> "F" AA....LL 22]

Define screen format. This sequence downloads a setting for the
CRIC to the video card. AA....LL represent the twelve bytes
that are to be set in registers 0 to 11 of the CRTC (see
Appendix B for appropriate values) and ZZ is the byte that
selects the dot clock appropriate for the 80-wide alpha-numeric
display, the 40-wide alpha-numeric display, or the graphics
mode display. The values for ZZ are shown below:

msh 1shb
80-wide HEXXXHIO0
40-wide XXXXXXI11
Graphics XXNXXX01

¥ = "don't care"

HNote that data is only required for twelve of the CRTC s
registers, the Display start address and Cursor address are
added by the on-board software. The wvalues are only programmed
inte the CRTC on receipt of the <ESC> "3" sequence.

[<ESC» "G")]

Construct the block-graphics characters in the character
generator. The block-graphics character set is constructed in
the character generator at character addresses 0COH-0FFH.

{See Appendix E)

{<ESC> "H"]
Copy the complement of the contents of the normal character
generator to the altermate character generator. As a result

setting bit 7 of a character will result in it being displayed
in inverse wvideo.

1B

iB

i

iB

iB

1B

18 5

15

49

4B

4Caasa

4D

K

4F

B2ss:s

[<ESC> "I"]
Display the entire screen in inverse video.

[<ESC> H’Jfl]
Display the entire sereen in normal wvideo.

[<ESC> "K"]

Keyboard input. The next character from the keyboard is
returned through the data port. If there are already characters
stored in the keyboard buffer, then the next character will be
returned immediately from there, otherwise there will be a
delay until a key is pressed. (See also <ESC> "k™.)

{<ESC> "L" LL-HH vivs:]

Load a user routine to workspace ram. This sequence allows a
user program to be loaded to the workspace RAM of the video
card (see Appendix A).

:[{ESE} ”H"]

Memory lock on. All lines on the screen above the current line
are "locked" on the display. If the screen scrolls these lines
will not scroll. The "cursor up" key will not move the cursor
into this area, nor will the "Home & Clear" code remove them.
However the cursor addressing sequence allows the cursor to be
positioned in this area. The "memory lock" function allows
headings ete to be placed at the top of the screen, and to be

preserved even if the display is subsequently scrolled or
cleared. {(See <ESC> "0".)

[<ESC> "N"]
Normal character set. Characters are stored in the display as
received, Bit 7 is not complemented. (See <ESC> "A".)

[{ESG} ﬂﬂll]

Memory lock off. Turns off the memory lock function. {See <ESC>
™",

[<ESC> "P"]

Returns a pair of coordinates from the light pen. The
coordinates of the selected character cell are returned as
<row> followed by <column>. (Similar to <ESC> "?", but no
tharacter is returned.) Depending on the design of light pen
used these coordinates may need a small adjustment to arrive at
the correct character cell.

{<ESC> "R" XX YY] ALPHA mode only

Resets block graphics point X,Y. Two bytes holding the X and ¥
coordinates respectively follow the lead-in sequence. These
bytes include an offset of 20H in a similar manner to <ESC>
"=", Point 0,0 is at the top left of the screen (and so is
addressed by a coordinate pair of 20H 20H). The maximum
coordinate values depend upon the current sereen format. If the
coordinate pair represents an illegal point then the request is
ignored.

1B

1B

1B

1B

1B

I8

LB

1B

52...

p i PP

53...

S5haass

5'&-1;

56

574aaa

[<ESC> "R" Xlo Xhi Ylo Yhi] GRAPHICS mode only
Resets the pixel X,¥. The display origin (0,0) is at the bottom
left of the screen.

{<ESC> "8" XX YY] ALPHA mode only
Sets block graphics point X,Y. (See <ESC> "R"... .}

[<ESC> "5" Xlo Xhi Ylo Yhi] GRAPHICS mode only
Sets the pixel X,Y. (See <ESC> "R".c.)

[<ESC> "T" XX YY] ALPHA mode only

Test block graphics point X,Y. (See <ESC> "R"... above.) The
requested block graphies point is tested. If the point is OFF a
byte of 0 is returned, 1if the point is ON a byte of 01 is

returned, and if the coordinates were illegal then a byte of 02
is returned.

[<ESC> "T" Xlo Xhi Ylo Yhi] GRAPHICS mode only

Tests the pixel X,Y. The requested graphics point is tested. If
the pixel is OFF a byte of 00 is returned, if the pixel is ON g
byte of 01 1s returned, and if the coordinates are not within
the display area a byte of 02 is returned. (See <ESC> "R'... .}

[<ESC> "U"]
Execute User program. The program previously loaded by the
<ESC> "L" command is executed. (See appendix A for details.)

[<ESC> "V'"]
Video. Turms on a previocusly blanked display. (See <ESC> "B'.)

[<ESC> "W" LO HO LC HC MM]

Write to Display. This sequence allows characters to be moved
at high speed direct to the display memory without any of the
normal checks for control characters. This command is useful
when it is required to update the secreen at a very high rate,
but it puts the onus on the user to get the screen format
correct as the normal screen formatting characters (carriage
return, line feed etec), are treated as normal printing
characters and are placed directly into the display. The lead-
in sequence is followed by a screen offset address (LO HO = lo
byte followed by hi byte). This 16-bit number represents the
offset (in characters) from the start of the display to the
address at which the characters are to load. Next (LC HC) comes
the l6-bit byte count of the number of characters to be loaded.
The next byte, (MM), is ignored. It must be present, and was
used by the IVC monitor to signify whether the load was to be
“transparent’ (i.e. characters were only moved to the display
during the blanking intervals), or “direct’. If the byte MM was
equal to "T" (54H) or “t" (74H) the load to the IVC was done
transparently, and as a consequence was not as fast. Any other
value resulted in the leoad being immediate, and as a result
interference could occur on the screen unless the display was
blanked.

Iﬂ.;_-ﬁi.

Lg 28

1B 59....

ib 34

18 &1

»

£l

With the SVC the highest possible transfer speed can be
obtained by first blanking the display as this also has the
effect of disabling the display memory arbitration circuit,
thus giving full priority to the ZB80E.

[<ESC> r!xn]

Keyboard line input. Obtain one line of input from the keyboard
connected te the 8VC. When this sequence is received the video
card will internally echo characters from the keyboard to the
display until the "return" key is pressed. When this occurs the
contents of the screen line currently holding the cursor are
queued ready for reading by the Host system. Trailing blanks
are removed from the line, and it is terminated by a carriage-
return. While in the "line input" mode all the control codes
can be used to move the cursor about the screen and to modify
its contents, (i.e. On-screen editing can be used), and it is
only when the code for "carriage return" (0DH) is detected that
the mode terminates.

[<ESC> "Y" AA BB]

Define cursor type. This command defines the characteristics of
the cursor. Byte AA is loaded to register 10 of the CRTC
controller, and byte BB to register 1l. (See Appendix B.)

[<ESC} |rzn]

Returns the contents of the line currently holding the cursor.
Trailing blanks are removed, and the returned characters are
terminated by a carriage-return.

[<ESC> "a" NN]

Set/reset attributes. This sequence is used to select the
attributes that apply when bit 7 of a displayed character is
set. The lower 4 bits of the byte NN are used as follows:

BIT effect
0 BLINK. 3etting this bit will cause all
selected characters on the display to
blink at a regular rate.
| HALF Setting this: bit: will cause all
INTENS selected characters om the display to
be shown with reduced intensity.
HALF If this bit is set, all the selected
TONE characters will be displayed with a
half-tone background.
3 ALT. This is the default setting, and
SET selects the altermate character
generator. If this has not been re-
programmed, this results in the

character being displayed in inverse
video. (If necessary this can be set

up again using <ESC> "H".)

P

The atfributes may be set in any combination. 2.g. sending
NN=XXXX1001 would result in inverse blinking characters.

IB 62 ..

1B 83...

iB 64 ..

IB 00ass

[<ESC> "b" CC]

Read back the currently programmed character set. This sequence
allows the bit-patterns in the character generator to be read
back to the Host system. Either the pattern for a single
character can be read, or the entire contents of the character
generator may be requested. The response is controlled by the
parameter CC. As usual the most-significant bit of CC controls
which of the character generators is accessed. (Setting the msb
selects the alternate character generator.) The lower 7 bits of
CC select the character pattern required. If the character 00
or character 80H is requested, then the entire contents of the
appropriate character generator are returned, (2048 bytes).
Otherwise the 16 bytes associated with the specified character
are returned. N.B. all 16 bytes are returned, although there
are normally only 10 active lines on the display.

[<ESC> "e" GG XX...+22]

Load character set. This sequence is used to load a complete
character set to either of the programmabhle character
generators. The byte GG specifies whether it is to the normal

or alternate one. If GG=0 then the character set is loaded to
the alternate character generator, if it is non-zero then the

load is to the normal character generator (if programmable).
¥...ZZ are the 2048 bytes that are to be loaded. The first
sixteen bytes are the rows for character 00, the next sixteen
for character Ol... ete. (See <ESC> "C'M.)

[<ESC> "d" CC] GRAPHICS mode only.

Graphics screen dump. The entire graphics screen memory (8192
bytes) is returned to the HOST, starting with the top left~hand
corner of the display. If CC = “p” or P’ then the SVC performs
the necessary translation to suit a dump for a dot-matrix
printer running in graphics mode.

i.e. If the "P" option is selected, then the display is read
out in lines 8 dots high. (Each byte returned represents 8 dots
in the Y-axis, and a single dot in the X-axis. There will ke
256 bytes per scan of the screen width, and a total of 32
‘scans’.) Otherwise each byte represents 8 dots in the X-axis,
and one dot in the Y-axis. (In this case there will be 32 bytes
for each scan of the screen width, and a total of 256 "scans’.)

[<ESC> "f" XX YY..usZZ]

Define a string for a Function key. This sequence is used Lo
change the definitions of the function keys on the extended
keyboard, or to request the current definition tabhle. 3See
section 10.

1B 87 ..

ﬁ;; iR 68

1B oB

IB &6C ...

I8 8D ...

LB oF ...

[<ESC> "g" CC]

delect language character set. This sequence re-programs the
normal character generator with the language character set
selected by the lower 3 bits of the byte CC.

cC

0o English
01 Swedish
02 Danish
03 German
04 French
05 USA

06 English
a7 English

NOTE: This should be followed by an ES5C H if the correct
inverse character set i5 required as well.

[<ESC> "h"]

Copy the contents of the normal character generator to the
alternate character generator. As a result setting bit 7 of a
character will have no visible effect. (This will only be true

if the “alternate character set” is the only attribute
snabled.}

[<ESC> "k"]
Keyboard status. The card returns a byte of 0 if no characters
are waiting to be read from the keyboard buffer. If one or more
characters are waiting, then a byte of OFFH is returned. The
actual characters themselves are obtained by using the sequence
<E5C»> "K".

[<ESC> "1" Xlo Xhi Ylo Yhi PEN] GRAPHICS mode only
Draw a line. Draws a line from the current graphiecs coordinates
to the specified point X,Y using the pen type requested. The
PEN options are:

00000000 - No change.

XHEXEO1 Pen down. (Turns pixels on.)

¥XXXXX10 - Pen up. (Turns pixels off.)

BopG1l - Xor. (Complements pixels.])

¥ = don’t care

[<E5C> "m" Xlo ¥hi ¥Ylo Yhi] GRAPHICS mode only
Move. Moves the graphies cursor to the point X,Y.

{<ESC> "o" Rlo Rhi PEN] GRAPHICS mode only

Circle. Draws a circle on the display of radius R, centred on
the current graphies coordinates using the pen tLype specified
by PEN. (See <E5C» "1".) A true circle is drawn (in terms of
the pixels), but its exact appearance will be determined by the
Width and Height settings of the video monitor in use.

13 ?0 LR

IB 74 ...

18 76

ig 77

[ESC "p" NN] ALPHA mode only
Select display/update partitions (or windows). This sequence
selects which partition (or window) of the display memory is
updated by the incoming characters, and which window is
actually displayed on the screen. Bits 0 and 1 of NN select the
window to be updated, while bits 2 and 3 select the window to
be displaved:
msh 1sb
NN = XXXXEDDUU

where: XX = don"t care
DD = no. of display window (00 01 10 or 11)
U0 = no. of update window (00 01 10 or 113

[<ESC> "t" ®WN ...]

Screen clock option. This sequence allows the SVC software
clock to be set, read, enabled and disabled.

ESC t E - Enables the clock display.

ESC t D - Disables the clock display update.

ESC t = X ¥ - Defines the position of the clock on the screen.
ESC t HHMMSS - Sets the clock to HH MM 55.

ESC t 7 - Returns the current time in the format HHMMSS.

{See the CLOCK sectiom.)

[<ESC» Hvil]
Return version number. The card returns the version number of
the SVC software. A single byte is returned, with &40H
representing version 4.0, 4lH representing 4.1, 50H
representing version 5.0 and so on.

NOTE. The SVC wersion numbers start at 4.0 in order to
distinguish them from the earlier Gemini IVC card whose version
numbers started at 1.0 but will never reach 4.0.

[<ESC> "w'"] GRAPHICS mode only

Graphics fill. This sequence will fill in a bounded area of the
graphics screen starting at the current graphics cursor. The
£ill proceeds outward from the starting point and will turn ON
all pixels within the bounded area, whatever its shape. The
£i1l routine requires a reasonable amount of workspace if it is
to handle complex shapes, and so it utilises the lkbyte USER
AREA within the SVC. If a user downloads a program to the SVC
{see ESC L), then the £ill routine automatically adjusts itself
to use 3/4 of the remaining space. i.e. if a 512-byte user
program is downloaded, then the fill routine will use the last
384-bytes of the user area for its workspace. Due allowance for
this should be made by the user program. (N.B. the space is
only used if an "ESC w" is received, otherwise it is left
untouched.)

The fill routine can fill quite complex shapes with as little
as 128 bytes of workspace.

8. SVC features

This section covers the clock feature of the SVC in greater detail.

H.1. Software Clock

The SVC supports a software clock by decrementing an internal counter
once per displayed frame (50 times a second). Every time the counter reaches
zero 1t is reset to 50, and an ASCII elock is incremented. The ASCIT clock is
neld as HH:MM:55, and each pair of characters is incremented by a common
routine. The gives the clock the idiosynecrasy that the hours will count up
from 00 to 59 before resetting, a feature that will only be noticed by those
who run their system overnight. On power-up the clock is zeroed, but
subsequent resets will not disturb the current setting.

The Escape sequence <ESC> "t"..... is provided to support the clock. The
various possibilities are listed below:

ESC t = X Y - defines where on the screen the clock will appear. The default
position is at the right-hand end of the top line of the display,
although this may be changed by sending the ESC t = X Y sequence,
where X and Y are the desired screen position for the clock
display. The parameters required in the positioning sequence (= X
T) are identical those of the "<ESC> = X Y" cursor addressing
FequUenca.

E5C L HHMMS55 - Initialises the clock display to HH:MM:5S. The characters
represented by H,M and 5 should be ASCIT numerie characters.

=]
i
L
.

- results in the current contents of the clock being returned to
the Host system as 6 ASCIT characters in the form HHMMSS.

ESC t E - Enables the display of the clock. As a result, once per second
immediately following the internal update of the clock, the clock
is copied across into the display memory at the defined address.
If the screen display is static, then the clock will just appear
to “tick” away like any digital clock. However, if the display is
serolling, then the clock will disappear off the top of the screen
as the line it is written to serolls. It will re-appear at its
defined place when it is next updated, onme second later. (This
effect could be prevented by “locking” the top line of the
display. (See <ESC "M".))

Ll
Lo
]
P
[=—

- Disables the display of the eclock. Note that this does not
remove the clock from the display, it only stops the screen update
of the clock. Thus there will be a stationmary display on the
screen until the screen is cleared or the line is scrolled off the

Lop.

9. Caveats

9.1« Lnadvertent requests

Some of the escape sequences request data from the Video card (e.g. <ESC>
“1"). 1f one of these sequences is sent (or typed) by accident, (perhaps an
object program is listed by mistake, and part of the code imitates one of the
sequences), then the Video card could “hang up” waiting for the requested
bytes to be read. To prevent this occuring the routine that transfers bytes to
the Host system also checks the incoming data buffer. If the Host system
continues to send bytes to the Video card then the current output operation is
aborted and the Video card returns to accepting input characters in the normal
WAy .

9.2. Nested escape sequences

The SVC software accepts a limited depth (4) of nested escape sequences.
However this only applies to the two character sequences (e.g. ESC A), and
certain multiple character sequences (e.g. <ESC> =,5,R and T = in alpha mode).
This is done to allow certain of the sequences to be typed on a keyboard
attached to the SVC where the keyboard characters are read by the host system
and then echoed back to the SVC. This is illustrated below:=-

Characters transfered Action
To SVC From SVC

ESC Escape sequence starts.
K Get a keyboard character.
ESC Escape is typed on the keyboard

and returned to the Host.
(ESC K terminates)

r ESC Host echoes character to SVC.

] (Escape sequence starts)

i ESC Host sends start of Keyboard

| input request. Previous ESC

| is stacked, new one starts

| K Get a keyboard character

! A 4 is typed on the keyboard and

|

!

I

L

™

=

returned to the Host. ESC K
terminates and previous ESC
reinstated.

A Host echoes character ta SVC.
Alternate PCG now default, ESC
A now terminates.

However 1f an escape sequence iz actually started then another ESC
character will not be recognised until the sequence is completed. (See below).

9.3. Escape sequences and BASIC

This section highlights a problem that could ocecur if the special
features of the SVC are used from application programs under a high level
language. It is unlikely that this problem will be met by anyone writing
programs in assembly language, but it could occur in BASIC as it is easy to
forget exactly what is happening at the lower systems level.

As mentioned above (in 9.2}, once one of the various multiple escape
sequences has started the SVC cannot recognise another escape character until
the current sequence has finished. The reason for this is that the character
<ESC> may well occur in the data being passed to the SVC and so no further
checks for any control characters are made until the requested transfer is
complete. The problem that could occur with Basic is illustrated below:-—

1000 REM Define a striped character

1010 PRINT CHRS$(27);"cC\"; :BEM Redefine character "\"
1020 FOR I=1 TO 16 : PRINT CHRS(176):; : NEXT I

This would not work because between lines 1010 and 1020 the BASIC
interpreter would poll the keyboard to see if the user had typed a Control/C

Lo interrupt the program. As a result what the system would attempt to send to
the SVC would be:-

E3C ¢\ ESC k 176 176 176 ...
{line 1010} {Poll for ~C) {line 1020)

Presented with this sequence the SVC would interpret ESC k as the first
two bytes of the sixteen bytes that will make up the character definition (as
they follow the lead-in ESC C \), and then wait for the next input character.
However the Host system’s keyboard routine thinks that it has just requested
the keyboard status and so waits for a reply from the SVC (having sent the ESC
k). The net result is that the system hangs up with the Host and the SVC each
waiting for the other to send something. The only way out of this impass is to
press '"Reset". (Note that the character definition never actually gets sent.)

This problem can be avoided by restructuring the BASIC program so that
the entire escape sequence is contained within one Print command:-

Use either 1010 PRINT CHR$(27)3;"C\";CHRS(176);CHRS(176)3 0uns
ar first put it all inte a string:-
1010 PS=CHRS(27)+"C\"+CHRS(176)+CHRE(176)+4 s + 4
1020 PRINT P$;

Y.4. System peculiarities
When sending strings of characters to the SVC as part of an escape
sequence beware of the operating system/High level language!

For example the CONOUT BDOS function in CP/M always polls the keyboard
ilooking for a 73) on every character that is output. To avoid this either
include a version of PUTVID in your program, or use function 6 - direct
console I/0.

With Microsoft BASIC it is advisable to use the WIDTH 255 statement to
s2t the screen width. If this is not done you will find that BASIC
automatically inserts the carriage return line feed pair (ODH 0AH) at the most
{nopportune moments. (A well known law states that it will be in the middle of
an escape sequence, and at a point guaranteed to lock the system up). Also you
will Eind that BASIC will expand the character 09 (Ascii TAB) to multiple

spaces, and will replace 08 (Ascii Backspace) by the three-byte sequence 08H
20H 084! ¢

10. Keyboards

The SVC includes an I/0 port to which a keyboard may be attached. The
software supports two varilants of kevyboard, normal or extended. In both cases
the keyboards are expected to produce 7-bit ASCII codes, but in the case of
the extended keyboard a range of double-byte codes are used to distinguish the
programmable function keys from the normal alphanumeric keys. An on-board
switch is used to indicate which type of keyboard is connected. (See section
5.)

The hardware interface supports either a parallel or serial keyboard. The
required specifications and connection information can be found in the
optional 5VC hardware manual.

10.1. The Gemini GMB821 keyboard

The GM821 is a conventional 59-Key Ascii encoded keyboard that connects
directly to the parallel SVC keyboard port. In addition to the conventional
keys 1t includes four cursor control keys at the right hand end of the
keyboard. Wote that on this keyboard Cntrl/” and Cntrl/| produce the codes for
"delete line and scroll up" and "insert line" rather than the Shift/ of the
other Gemini keyboards.

10.2. The Gemini GM827 and GM852 keyboards

These keyboards have additional keys in the form of a row of special
function keys along the top of the keyboard, (labelled FO-F9 and EDIT), four
cursor control keys, and a separate numeric pad to the right of the main keys.
These additional keys may be programmed (via the 5VC software) to return one
or more characters to the host computer every time that they are pressed. In
order that the SVC can distinguish these special keys the keyboard returns
unique double-byte codes from these keys. The SVC software replaces each
double-byte code by a single character or string of characters from an
internal table. This table is held in the workspace ram of the SVC, and may be
modified at any time, either by program, (using the "ESC f" sequence), or
directly from the keyboard. On Reset an initial table is copied out of the
SVC-MON EPROM into the RAM. The necessary information is given in appendix D
for those able to program 2764 type EPROMs who wish to change the default
strings.

The shift key may also be used in conjunction with these keys to produce
another set of unique codes.

Each of these keys, with the exception of shift/EDIT can be redefined to
produce any character or string of characters required. For example FO could
be set up to hold the string "pip ar=bi*.*[v]<CR>". The key definitions may be
set up in two waysi-

a) By the User at the keyboard, and
b) By a program using an escape sequence.

10.2.1. Defining keys from the keyboard.
Typing shift/EDIT on the keyboard will draw the response

*#%% List/Edit a Function key *#%

If a function key is now pressed, the current definition of that key
1s listed on the screen. All control codes in the string are displayed in
theexpanded form of “<character> (e.g. a carriage return would appearas
“M). This is followed by the message:

%% List/Edit complete #*#%

The 5VC monitor has put this information directly onto the screen,
NOTHING HAS BEEN SENT TO THE HOST COMPUTER and it is totally unaware of
what has happened.

If instead of hitting a function key shift/EDIT is pressed again the
following string will appear:

#*% Press the function key to be defined, then type in a string **#*
kkk followed by any function key #*#&%

at this point you can select the function key you wish to redefine.
Type it followed by the string vou wish to enter. As you type in the
string it will be echoed to the screen, once again with control
characters being expanded to the form “<character>. NOTE it is assumed
that any character typed is to be part of the string, thus if you hit
"backspace" “H will appear on the screen and the control/H will be
entered into the string. If you make a mistake you will have to start
again.

The zntry of a new definition is ended when any function key is
pressed. (No recursive definitions are allowed!.) At this point the
following messages will appear:

%% New definition entered ##%
k List/Edit complete Fdkk

If wwo string was entered the function key will no longer return any
characters, and if the key is "listed" the following message will appear:

*#%% Function key undefined *%%
*%% List/Edit complete **#

#s above, the Host system IS TOTALLY UNAWARE of what is happening,
and it is possible to re-define the keys at any time in this manner.

10.2.2. Defining keys by software.
A key may be redefined by software using the following escape
sequence Within a User program:

ESC f <code> <string> <byte with msb set>

where <code> is the unique code identifying a function key. <string> is
the string of characters to be returned every time the key is pressed.
The new definition is terminated when a byte with the msb set is
encountered. If this byte is a legal keycode (81H-OBDH excluding 90H and
9BH - See Appendix C) then a new definition is started, if it is illegal
{i.e. > OBDH) then the escape sequence is terminated.

Two additional features are included in the escape sequence:
<ESC> <f> <d> or <ESC> <f> <D> will reset the key definitions to their
default (or power-up) state.
<ESC> <f> <7> will cause the SVC to send to the Host the table of the

current function key definitions. The table is terminated with the byte
OFFH.

N.B. It is perfectly possible to enter a null string for a key definition
and effectively disable it. (It will be ignored until redefined.)

If you get too carried away with your definitions you will see the
message:

#%% SVC internal error — table overflow #%#

This should not normally happen as the table can use up to 512 bytes
which gives an average of about 8 characters per key (assuming the
numneric pad is redefined as well).

10.2.3. KEYCHAIN

The simple program KEYCHAIN can found on Gemini CP/M disks. (If you do
not have a copy on your disk ask your local Gemini dealer for a copy of
the .MAC and .COM files.) It is an extension of the earlier distributed
program SAVEKEYS.

KEYCHAIN 1illustrates how a COM file can be set up to hold a particular
set of key definitions. When run it invites the user to use the
shift/EDIT mode to define all the function keys to his requirements. When
this has been done the current function table is read and written away to
disk along with a small program which will reload it. The source program

format is for Microsoft’s M80 assembler. Optionally the program will
chain in another file once it has run.

Thus it is possible to easily set up files such as KPEN.COM and KWS.COM
that could be executed before running programs such as PEN or WORDSTAR to
customise the key settings appropriately.

The syntax for running KEYCHAIN is:
EEYCHAIN <filename> [<chainname>]

where <filename>.COM is the name of the file that the key
definitions will be stored under, and <chainname> is an optional

name that will be passed across to the CCP once <filename> has run.
This will result in <chainname>.COM being loaded and executed (if

present).

<chainname> may be omitted if no Ffile is to be chained.

%

A

For example if you have a program CAD.COM that requires a set of custom
function key definitions you can do the following:

1) Rename CAD.COM to CADPROG.COM i.e. REN CADPROG.COM=CAD.COM
2) Run KEYCHAIN to set up a key file i.e. KEYCHAIN CAD CADPROG

Now when you type CAD, CAD.COM will be executed and so set up the correct
key definitions. This will then chain in CADPROG.COM, the original CAD
program. As far as the user is concerned he still types in the same name
to run the application program, and there is a short delay while the key
definitions are set up before the main program is executed. (If, when the
program terminates, it sends the sequence <ESC> "f" '"D" the function keys
will be returned to their normal (default) settings.)

A. Writing your own programs for the SVC

This Appendix is intended to give general guidelines to anyone who wishes
to write programs that are intended to execute within the SVC.

The area currently available to user programs is from OE400H to OEJFFH, a
total of lk bytes. The user program is downloaded to the SVC by the <ESC>
“L".. sequence. The lead in is followed by the size of the program (lo’ byte,
then hi byte), and then the program itself. This is a similar format to the
<ESC> "W" command, but without the offset. The program is loaded inte the
workspace RAM starting at address OE400H. Following completion of the load
control is passed back to the 5VC software. The downloaded program is only
executed when the <ESC> "U" sequence is received, at which time a CALL is made
to address OE400H.

Note that this area is also used by the “graphics fill® routine (see ESC
"w"). The £ill routine requires a reasonable amount of workspace if it is to
handle complex shapes, and so it utilises this lkbyte USER AREA within the
SVC. If you download a program to this area the fill routine automatically
adjusts itself to use 3/4 of the remaining space. i.e. if a 512-byte user
program is downloaded, then the £ill routine will use the last 384-bytes of
the user area for its workspace. Due allowance for this should be made by the
user program. (N.B. the space is only used if an "ESC w" is received,
otherwise it is left untouched by the SVC software.)

f.1. General
On the card the wvertical sync output of the CRTC is connected to the NMI

line of the Z80B. As a result the processor is interrupted every 20ms. In
response to the WMI the SVC software updates the cursor registers of the CRTC
and also updates the software clock and various attributes. This interrupt can
only be disabled by holding the CRTC permanently reset by writing a 0 to hit 3
of the control latch (address 0CO00H). If you wish to leave the display
running the following points should be observed:-

The NMI routine requires 8 bytes of stack.

Any routine that wishes to alter the internal registers of

the CRTC should first synchronise to an NMI to prevent the

loading sequence being corrupted. This is best done by

executing a HALT instruction, exit from the Halt state

being effected on receipt of an WNMI by the ZB0B.

The keyboard input runs under interrupts and requires 14

bytes of stack space.

A.2. Mode

The user program can be organised in two ways. One is to be totally
independent of the 3VC software, in which case memory and registers can be
used in an indiscriminate fashion and return to the 5VC software has to be via
the Reset address of 0. The other is to respect certain registers (detailed
below), in which case routines within the SVC software can be called, and a

controlled Return can be made to the main program leaving the Screen display
intact.

- 30 Stack

On entry to the user program a limited amount of stack space is available
{about 10 bytes - due allowance has been made for the NMI routine). The
current address at the top of the stack is the correct return address for the
routine. So if this amount of stack is adequate the stack pointer can be left
alone, and the program terminated by a RET instruction. If not the stack

pointer should be saved and a local stack used for the routine, and the stack
pointer reset before the final RET.

A.4. Registers
The alternate register set should not be altered. It contains certain

values that are used by the Restart routines listed below. Register IY should
not be altered. All other registers may be used.

4.5. Utility subroutines
The following subroutines may be called by the user program. They have been

retained for compatibility with the IVC although not all are necessary for the
3VC:=-

BST O8H PUTSCR {Use if IVC compatibility required.)
Puts the character from register A to memory address (DE). In
the IVC this was done immediately following a horizontal sync
pulse and was used to provide transparent access to the screen
memory or the programmable character generator. For the SVC -
LD (DE),A - will suffice.

®ST LDH GETSCR (Use if IVC compatibility required.)
Gets a character from (DE) and loads it into register A. This
is done In a similar fashion te PUTSCR. For the SVC - LD
A,(DE) = will suffice.

#5T 18H SCAN (Use if IVC compatibility required.)
Scans for a waiting character from the Host system. If one is
there it is transfered to the input buffer. (This routine is
the one called oecasionally by the serolling routine within
the IVC. The SVC does not use this function.)

RST Z0H SETCHR
Gets the next character from the Host system. If the buffer is
in use it gets the next character from there after adding any
waiting one from the interface. The character is returned in
the A register.

sl 30dH PUTCHE

Transfers the character from the A register to the Host
system.

The contents of the following workspace locations may be of interest to
the program writer.

JEQDG start of Display
OEODC Current Cursor position
JEOEQ Screen width

JEQEZ Screen height

B. CRTC Information @

Details of the CRTC registers can be located in data sheets on the 6845
display controller. Listed below are the details of the wvalues programmed into
the CRTC in response to the <ESC» 1, <ESC> 2, and <ESC> 4 Sequences.

80 Wide 40 Wide Graphics
format format format

Register Hex Value

a BF 37 37 ; Horizontal total characters -1
1 50 28 20 ; Horizontal displaved characters
2 58 2E 2B ; Horizontal syne position -1
{in character units)
3 7F 77 45 ; Vsync/Hsyne width
4 1E 1E 12 : V. character lines total -1
5 0z 02 08 i V. scan lines adjust (raster lines)
6 19 19 10 ; V. displayed character lines
7 1B 1B 11 ; V. sync position &
& 40 40 a0 : Interlace and skew
9 09 09 oF ; Rasters per character line -1
L0 48 48 48 ; Cursor type & start raster
11 0na 0& 08 ; Cursor end raster

Hote that the horizontal sync width in each case has been set to a larger
value than the broadcast standard. This has been done to ensure that a stable
display is produced on most monitors (irrespective of quality) when the video
on the screen is inverted. (<ESC> 1.)

Registers 10 and 11 define the appearance of the cursor as shown below.

msb 1sb
Kegister 1D +- BPRERRRR Cursor Display Mode

B P
00 Non=-blink
01
10

Cursor not displayed
Fast blink (16 field)
11 Slow blink (32 field)
RRRER 1is the cursor start raster address &

msh 1sb
Kegister 11 + s+ s RREERR

RERER is the cursor end raster address

For example to produce a solid slow-blinking character cell for the cursor Lhe
following values should be programmed:-

Register 10 set to - 1 1 0 00 ie 60H
Register 11 set to . . . 0 01 ie 09

(The raster lines of a character are numbered from O to 9)

NOTE: Although you may program in a new setting for the appearance of the
cursor, this may be immediately overwritten by the operating system.
{e.g. The standard Gemini CP/M BIOS alters these registers.)

= 37 -

C. Function Key codes

Shown here are the hexadecimal codes associated with the various
programmable keys on the GM827 and GM852 keyboards. They are NOT the codes
returned to the Host system, but are the codes used in the "<ESC> f" sequence
to identify individual keys. The codes are in the range 81H-0BDH. Note that
Lthe following codes do not occur and are treated as illegal by the "<ESC> £"
sequence: 90H and 9BH

The function keys:

e e e T

shitted | 91 | 92 | 93 | 94 | 95| 96 | 97 | 98 | 99 | 9A | XX |
normal | 81 | B2 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 8A] 8B |

KEY | FO| FL | F2 | F3 | F4 | F5 | 6 | F7 | F8 | F9 | EDIT |

The Cursor coatrol keys:

S i s e e s 2 i e e e i

shifted {9c | 9D | 9E | 9F |
normal | 8c | 8D | 88 | 8F |
KEY | Cursor keys |
The Numeric pad:

shitted | BO | B1 | B2 | B3 |
normal | A0 | A1 | A2 | A3 |
KEY 7 18 |9 |+ |
shifted | B4 | B5 | B6 | B7 |
normal | A4 | A5 | A6 | A7 |
KEY |4 |5 16 |- |
shifted | B8 | B | BA | AF |
normal | AB | A9 | AA | AE |
KEY 1 12 |3 |E |

- i | " |
shifted | 8 | BC | BD | T |
normal | AB | AC | &aD | E |

— -- I r]
KEY s 10 | I |

- 33 -

D. Changing the default Function key settings

If required the table of default key definitions in the monitor EPROM
{8VC-MON) can be changed. In order to do this you must be able to re-program a
2764 type EPROM. The existing EPROM should be copied to the memory of the
programmer, and then the end of the program in the EPROM should be located.
Currently this is around address 1900H-1AO0H. Searching backwards from this
point the copyright message "(¢) dei software 1984" should be located. The
default table starts immediately following this message.

The first four bytes of the table are:-
B0 1B 90 1B vvews {(In hexadecimal)

ON NO ACCOUNT MUST THESE BE CHANGED otherwise you will find that you have
redefined the ESCAPE key (normal and shifted).

The new strings can be entered in a similar manner to those already
there. The format is identical to that of the "ESC f..." sequence. (See
section 10.2.2.)

€§%

E. Block Graphics

The <ESC> ¢ sequence is used to set up a block graphics character set in
the PCG. To obtain the block graphics each character cell is divided into six
pixels, two units horizontally by three vertically. These pixels are turned on
and off by setting and resetting six bits in the character occupying that
character cell. To simplify matters the SVC will manipulate the block graphic

characters directly in response to commands specifying a particular pixel.
{<ESC> 5,R, and T).

The block graphics characters are in the range OCOH to OFFH and are
accessed by enabling the “alternate character generator” attribute. (See <ESC>
"a".) A character cell is divided up as shown below:

where U=3 represent the vorresponding bit positions in the charvacteri—

DR ¢.0.6.6..4

As the pixels are subdivisions of a standard character cell the
resolution available with the block graphics depends upon the currently
programmed screen size. It is Width*2 by Hedght#*3. With 25 lines of 80
characters per line the resoclution is 75 pixels vertically by 160
horizontally. With 25 lines of 40 characters per line the resolution is 75
pixels wvertically by 80 horizontally.

"
¥
W
3

F. PUTVID & GETVID Example

Shown below is a simple example of the use of PUTVID aund GETVID:

Simple demonstration program to pet a character from
the keyboard and to echo it to the screen.

escapa equ - lbh

i loop: 1d a,escape
5 call putvid
1d &, "K"

.
k)
"
¥

;

M ww s

mE apw ww

exit:

call putvid
call getvid
cp 03

ir z,exit
call putvid
jr o loop

Get s character from Lhe keyboard
ESC K gets a character

Read the typed character

Was it a Control/C?

Yes, break out of this loop

No, ‘echo to the screen

+«+then repeat %@E

PUTVLED - Transfer the character in <A» to' the SVC

putwvid: push af

pvi: in o a, (0b2h)
rrea
jr e,pvl
pop - af
out - {0blh),a
ret

MR W g WM wy W s

Save the character
Check "ready" flag
Move flag to carry
Wait if buffer is full

Get the character back
Send 1t out

Done

GETVID - Read a character from the SVO to <&>

getvid: in a,(0b2h)

rlca
jr o e,getvid
in a,(0blh)
ret

*
L]
¥
w
¥
¥

Eead the flag register
Move flag to carry

i Wait Lf the buffer is empiy

+a» 2lae read the character..
casand return with 1it. ﬂ@%

DNone - return to operating system

».scode to return goes here... {e.g« JF 0 for CE/M}

Coc B 17 b2

