

~3-

4.00, whilst re-susbeription will cost you 6.00 (even though for 6.00, you will he
gure of getting one as this also covers the postage and subscription administration).
Well we’re going to stop that one, from now on the retail price in your local dealers
is going to be 1.50 (and we’re going to charge the dealers more for it), so that means
a greater incentive to you to resubsribe, and that INMC80 can probably continue for
some time without increasing the subscription rate.

With the imminent demise of Nascom in sight, we felt that to keep this
newsletter going, it would be neccessary to “latch on to’ some other product that
would provide the membership which in turn would provide the income to allow us to
continue. You see, although this newsletter is NOT a commercial vehicle for the
benefit of any manufacturer, without the support of manufacturers in producing
products which they sell, and you buy and then want to know more about, we can not
exist. Te this end, in the last but one issue it was mooted that as there are more
Nasbus compatible products around than those that originate from Nascom, we ought to
become less Nascom orientated and more Nasbus orientated. We asked you for your views,
and out of a membership of about 2,000, and judging by the numbers of newsletters sold
in all, a readership well in excess of 4,000, we received no less that 4 replies.
Staggering isn’t it, 0.1% replied!!!! Does that mean that the other 3996 readers don’t
care what we do, or is the lack of positive action to be taken as disapproval, or that
the whole question is so obvious that it doesn’t require comment, or what? I might add
that those four letters were all in favour. (Dr. Dark seems to be in favour as well,
from his comments in the last Dr. Dark’s Diary.)

All this leads up to the quandary we are now in. Nascom have had a last minute
reprieve and, at the same time, what amounts to a new computer based on a similar bus
structure 1s soon to be launched. The software for the new computer will be derived
from much of the existing Nascom software. No it’s not a rip-off, most of Nascom’s
software is efither “public domain’ or privately owned by individuals not 1in any way
connected with Nascom. These guys saw their products about .0 die with Nascom and have
done the sensible thing of adapting their software to the new machine, in many cases
with considerable enhancements.

On Nascoms® death we intended to switch our allegience to the bus, and so by
implication to the mnew computer, which with it’s close adherence to existing Nascom
design conventions would allow us to continue, to the benefit of our Nascom
readership, and of course, to owners of the new machine.

Now, what are we to do. Support Nascom and Nascom products only? Or support
the bus, and by so doing, support Nascom and anything else that comes along?

It is our belief that to support the bus would be the best course. That way we
will be able to keep our readership informed of developments on all fronts. But it is
up to you to let us know. We wish to be guided by our members. PLEASE PLEASE PLEASE
drop us a line. Make it simple, Nascom only or the bus? We expect to receive hundreds
of letters (not just four). If, you feel this matter should be debated, then write to
the letters column. We don"t intend taking any decisions until the issue after next,
so 1f we’ve stirred up a hornets nest (I personally hope so) we’ll publish the letters
in the next issue and let the membership decide.

In the meantime, in this issue and the next, we will try to keep our usual
balance, but so that you know what is coming, we include details of the new machine.

S0, to fipnish up, life is almost back to normal Nascomwise. We look forward to
the new developments on the Nascom front (and if they remember to tell us first, we’ll
pass any news on to the most important Nascom owners, YOU, as fast as we can). In the
meantime we want to open the bus debate. S0 please write, I can promise you your
commonte will ba econcidaraed fully, although I doubt if we’ll have time to reply to
individuals. Don’t forget, we need material for this rag, so keep it coming. Until the
next time...

Letters
Lucas Logic Ltd

tO the Ed- Welton Road
Wedgnock Industrial Estate
Warwick CV34 5PZ

Warwick (0926) 497733

27 May 1981

Dear INMC80,

I’ve no doubt that you have heard before receiving this newsletter the news about the
takeover of Nascom Microcomputers by Lucas Logic Ltd. Many magazines and newspapers
carried the story and it was heartening to see how many thought it was worth front
page treatment. Obviously we did not buy Nascom just to get into the newspapers but we
were struck by the almost universal good wishes bestowed on us for keeping Nascom
alive.

Before making our bid for Nascom we evaluated the products thoroughly (helped of
course by WNascom users on the staff) and it was obviously too good a computer to let
go. This view was supported by the fact that there is such an active users club and so
many dealers still supplying parts and service.

So we know we have a good computer, a loyal distributor network and thousands of
satisfied customers. Where to now? Well apart from knowing that Nascom had a lot to
offer us we felt that we could offer Nascom a vigorous future, mnot just 1in its
traditional markets but in industry and business. Please don’t feel that we are going
to concentrate solely on industrial users and ignore the enthusiasts. Here in Warwick
we have the capability to do a lot with Nascom, in all directions and without falling
flat on our faces because we have stretched ourselves too far.

What is in store then? We don’t want to release too much information Just Yyet but
there are a number of products which we hope you will see quite soon. First a twin
floppy disk system which Nascom had started to work omn but receivership had prevented
from progressing. There will also be some new boards such as a colour board. We intend
that it should be possible to buy a Nascom board ready assembled and also a Nascom
assembled in a cabinet. There are some very good enclosures around, the Kenilworth
case being particularly suitable; there will still be a need for specific enclosures
for particular needs. However to improve the general appeal of the Nascom computer a
fully enclosed version is needed. Perhaps the most important development to keep us up
in the running will be to ensure that the Nascom computer is compatible with the BBC
microcomputing series in January 1982. Launch dates for all these products are still
being worked out but we fully intend to have them all available this year.

As you can see we are working hard with Nascom and we intend to remain among the
leaders in microcomputing. Obviously we will support INMC80 with information, but what
igs all this about rival computers in the INMC80 News? We fully support the principle
of compatible products and we are about to launch a Nascom approved scheme for the
best. But if INMC80 News wishes to back rival products as well then it should rename
itself "Practical Computing™ or similar appropriate name. Give us a chance Mr Chairman
and if then we foul it up you can include every widgit that you fancy.

Having got that off my chest I must say that I am pleased to write my first letter to
the INMC80 News and I hope that it will not be the last one. We will welcome your
letters too; Ken Jones our Sales Manager would like to hear from you.

John N S Deane
General Manager

Nascom Rules !

Congratulations on the latest dissues of the Club Newsletter. They were as
usual very interesting. I was particularly interested in the *System Software” items
such as ‘Load and Tab’, ‘VARPRO’, ‘CC.COM’ and ‘GLOBAL.CRT", as it is from this type
of item that one can get a much better understanding of the insides of NAS-SYS, BASIC,
CP/M etc.

T am very glad, having recently had short encounters with a PET, a TANDY, and
also with an Apple, to say nothing of a 6800 and an 8085 development system, that T
chose (quite by chance at the time), Nascom and the 7Z80.

Since the Nascom 1, in early 1979, was just about the only avallable choice
for a cheap single board system, the choice was largely decided for me.

I have now graduated to a Nascom 2 with full DOS/CP/M available and it only
remains for me to add a colour board and an 80x25 screen format to make the system
complete.

I do have one ‘moan’. It relates to publicity for NASCOM and INMCSO.

Many of the short ‘What’s Available’ and ‘Buyers Guide’ items in the Computing
Magazines are hopelessly inaccurate when it comes to Nascom products and compatible
accessories from other sources. It almost seems to me as if P.C. have a bias against
NASCOM, and PCW are little better. _ _

Similarly, the listings of Local and National Clubs have often omitted INMC80,
although I see that the club is listed in this months® P.C.

Please keep up the good work. I only wish I lived nearer so that I could give
more than verbal assistance.

Best wishes for continued success.
C. Bowden, Truro, Cornwall.

Just a few points.

Many thanks for the effort put into INMC80 which continues to be a mine of
useful hints and tips and also provides a ‘clearing house” for the discussion of
certain well-known (to some) bugs in NASCOM hardware.

For the amusement of all readers of INMC80 please mention the following
misprint on P.123 of William Barden’s "Z80 Microcomputer Handbook". Line 5 refers to
" ., the eternal interrupt...'"!! (Is this what sends the CPU to that great mainframe
in the sky!l). .

Regarding David Parkinson’s request for comments on documentation, may I
suggest a compromise in the amount of detail provided with a program? As was stated a
complete source code listing is liable to be expensive but how about:-

(a) Indicating major sections and/or subroutines by memory address;

(b) indicating also by memory address the positions of Code, Tables, Workspace
and Message Text so that disassembly may be carried out without too much Sherlock
Holmes work;

(¢) noting if any Monitor pointers or reflections have been modified.

A.J.Fry, Portsmouth, Hants.

Radio Hams

I think the INMCB0 News Is an extraordinary effort reflecting much enthusiasm
and one hell of a lot of very hard work and I appreciate it enough to join the chorus
for more issues, more often. No, I'm sorry, I've nothing to contibute (yet)} but I
would ask if you could put in a few lines stating that being a Radio Amateur (GM3TYS)
and have an TICOM ICZ45E VHF Transceiver, I would like to contact any enthusiast who
may have succeeded in interfacing an IC 245E/IC211 with his Nascom 2. My intention is
to do this and eventually write a program allowing frequency control, scan, search,
logging and RTTY/C.W. communication.

Secondly, my own system is a Nascom 2 with two 32K '"Ram A" boards (full 4MHz)
which I would like to add a ROM board to. It is housed within the Powertran case which
I can recommend as wvery excellent value and easily modified to take the NASCOM
keyboard with the main and memory boards behind and with the bus c¢onnectors to the
left and .the P.S5.U. to the right. A suitable cooling (miniature) fan is badly needed
though. Being steel and aluminium it is well suited to Amateur Radic use (for RFI
shielding) and it will support any weight of equipment on top.

Thanks and good wishes.

I.G. Drysdale, 104 Mosside Drive
Portlethen, Aberdeen, ABl 4QY.

Delta Capacitor?

Just when I was feeling the need of communication - all that came was a tax
return, then INMC8B0 News. Joy! After the first read, 1 wonder if anyone can tell me
whether a '"delta capacitor" is the same as an "interference suppression capacitor"
Maplin P.62. &/or P.176. a "mains transient suppressor"? My set-up is Nascom 2 built
with much help from Interface. A secondhand Digital Decwriter (no descenders) works
faultlessly with (RS232) no special interface: it was bought from Electronic Brokers,
who were very expert and helpful. Like the rest of us I suspect, what appeals
particularly about the Nascom is that it is so flexible, and there’s lots I can do to
make mine work for me, yet, as I learn how!

Thank you, and Best Wishes

Laurence Fisher, Canterbury, Kent.

PL1 Error.

Like Mr. D. Ritchie (P.14 INMCBO News No. 3) I have had trouble adding PI0s to
a NASCOM ! and was interested in his letter and thought that this was the solution.
Alas no. It took several more days to solve the puzzle of why all signals looked OK on
scope but the cilrcuit would not work.

I discovered that on my NASCOM board the data lines on PLl are not as in the
circuit diagram and hence when, for example, OFH was written to the PIO to put it in
the output mode it received some other code.

The correct connections are as follows

D0 - PL1/1 Dl - PL1/2 D2 - PL1/4
D3 - PL1/#6 D4 - PL1/S D5 - PLL1/3
Dé - PL1/7 D7 - PL1/8

T.Bailie, Co. Antrim, N.Ireland.

Anyone got a Creed?

I should be most grateful 1if you could let me know of any members who may have
successfully interfaced a Creed 7 series printer with a Nascom 2.

May I also thank you for the work you do in producing the most helpful and
informative 'News".

C.D. Macmillan, 7 Trentholme Drive,
York, YO2 2DF.

Cartridge Drive?

1 was very interested in the article on p-49 of INMC80-3 concerning the
cartridge drive. Do you know where T can get more information about the deck?

M.Millington, Edinburgh.

I0 Systems Ltd

I read with amazement the review of our high resolution graphics board in your
Feb/April issue by your reader Richard Bateman. What surprised me most was the totally
unprofessional way in which the review was performed without checking the facts, as
the review contained many inaccuracies which T would like to set right.

(1) Apart from the company name (IO not 1/0), the address is wrong.
(i1) The display is NOT 3-dimensionall
(111) The component count and manual size are both incorrect.

(iv) An explanation of how it works IS included.
(v} NO irreversible modifications have to be made to the board.
{vi) The number of connections required is incorrect.

(vil) The board is compact and WILL fit anywhere.

(viii) NO system RAM is lost as it is NOT dedicated to graphics (It may be used as
normal when graphics mode is not selected.).

(ix) Overpriced... Well in judging this may I point out that the hoard produces a
FULLY bit mapped high resolution graphics display (and iz NOT a character generator),
is fully built and tested and as such compares very favourably with any other graphics
product for this machine on the market.

L. J. Noble (Director IO Systems Ltd), 6 Laleham Avenue, Mill Hi1l, London, NW7 3HL.
(Please read the review again - you have missed several key words. - Ed.)

Educational Software

Congratulations on an excellent magazine, each issue seems even better than
the one before. David Hunt’s "Teach Yourself Z80" is really good. I like his light
hearted style of writing and at last Z80 language 1is starting to make sense. Keep up
the good work.

I'm a teacher and use my Nascom 2 at a local Primary School. Children between
the ages of 8 and 11 use various C.A.L. programs without any problems and they think a
great deal of my Nascom.

Can 1 appeal through you to contact other Nascom educational users. I°d like
to form a group of people that write and use Nascom Educational software.

Because of the time it takes to write and debug programs not much educational
software 1is around and I believe that if Nascom educational users could get together
to “swop’ programs then it would be to the benefit of all.

Many educational authorities recommend either the BRMZ380 because of its
reliability or the PET because of its range of software and relatively low price.

Neither machine, I believe, is as good as the Nascom and price-wise the Nascom
is or should be in a competitive position. Providing we educational users can provide
a range of software then the Nascom could be used in schools a great deal more than at
present. Without such software I imagine sales would be at a minimum despite the
advantages of the machine itself.

A user club specifically aimed at the educational user would benefit all
concerned as I believe the *380° is much too expensive for most schools and in
addition their new system will likely take it out of the thoughts of many educational
users because of the high costs.

The Pete arse ralatively cheap but are getting an increasingly bad name for
reliability in the educational sector. Can Nascom take their place? Perhaps if Nascoms
problems were sorted out quickly then Nascom might make inroads into the educational
sector.

Anyway enough of that, I have a couple of problems which despite much book and
.agazine searching haven’t been resolved.

The first is the INP function, would it be possible to write a section on how
this works and when we use it. I1°ve found it in a Computing Today program and cannot
fathom out how it works at all.

The second problem is that of a timer to indicate how long a program has run.

To give an example - lets say that we wished to time how long a pupil took to
do “say 10 sums’. How could we do this? The PET has a time function but such a
function is not available on our Basic. Is there a machine code sub-routine te do this
- such a routine would be extremely useful to me.

Once again thanks for a great machine - hope it keeps going for many years.

W D Cooper, 476 Denton Road, Newcastle upon Tyne. NE15 7HE.

Funny Tapes?

As Nascom Dealers we frequently encounter custemers with a low opinion of
cassette tape as a storage medium despite us knowing that the hardware is totally
satisfactory. Such customers invariable ignore what we now believe to be the true
cause - sub-standard cassette tapes! In common with other Dealers we sell blank Cl0 or
Cl2Z cassette tapes believing them to be "screened against drop-outs"™ and therefore
suitable for the recording of digital data. After trying the wares of many suppliers
of "screened" tapes (this includes a number of well-known "branded" products) we have
now come to the conclusion that if, indeed, they are tested for drop-outs, then the
test criteria are totally inadequate. We name no names because it seems that all
suppliers offer the same (abysmally low) standard.

Among problems that we have so far encountered are:-

Errors because the tape gets creased by most normal cassette recorders.

Errors because over-recording does not erase the old data.

Errors because a tape is read fairly frequently and wears out very quickly.

No (yes NO!) oxide layer on the tape. (It took a long time trying to decide if
this was a "Read" error or a "Write" error!)

When asked, suppliers invariably say that since no other customers have
problems, "it must be you" (does this mean all other customers are using low baud
rates such as that used by TRS80 etc. and can therefore be supplied with low quality
tapes without repercussion?)

In view of this widespread problem, have any of your readers found a source of
supply that is always reliable?

Richard S. Marshall, Chief Engineer, Business & Leisure Micro Computers.

Classified

1 Nascom 3A PSU built - 25.00 ono

1 5" wide module for Vero frame - 5.00 ono.
1 16K RAM A board built - 90.00 ono

“Phone Kevin on Aberdeen (0224) 36160.

Nascom 2. Nas-sys, Nags-dis, Debug, Zeap, Graphics, 32K Basic, Basic Toolkit,
Word processor (Wordease?), Music Box, 12/2400 Baud, all in Eprom. V.D.U. and

cagsette, approx. 40 tapes, all documentation, Epson TX-80B printer. Around 1,000.00
“phone 0924 496337 or 0924 490127.

Ticon Switrhee with hlank cape to update Nadeom 1 keyboard 1.65 cacli v 15.65
for 10 incl VAT + 35p per order P & P (see INMCBO Issue 2 and Liverpool Software
Gazette for connections). Chiatronix Ltd., 22 St. Michaels Avenue, Houghton Regis,
Dunstable, Beds. “Phone 0582 61697

Space Invaders

After reading INMCBQ TIssue 3 I realised I was in a position to help many

people.
The Space Invaders game published in Issue 2 is the same one that a friend of
mina hanght. Tha pragram noaade a 14+t+1a avnlanatrdians

1. The graphics option that 1is incorporated 1s for use with the William Stuart
Graphics System although gives a reasonable display with NAS-GRA.

2. The program will work with any Nascom monitor - T2, T4, B-Bug, NAS-5YS 1.
(NAS-5YS 37) (Yes -~ Ed.)

3. There 1s a ‘Pause’ command, operated by hitting the ‘P° Key. This temporarily
stops the program so you can answer the telephone etc. Hit any key to resume play.

The answers to W. Squires’ letter are:-
1. The program was written to run at 2MHz not the normal NASCOM 2 speed of 4MHz.

2. There are 3 places where the program has to be changed for different keys. The
first two places display and check for those keys not available as the fire key. The
bytes at 1058H and 105CH must be changed to check for the ACSII values of these keys.
Lastly the codes at 1785H must be altered. This piece of code scans the keyboard, then
looks for various keys in the keyboard map at (QCOlH. Using the routine at the end of
this letter it 13 possible to work out which bits of which bytes are altered by the
keys you have chosen-

e.g. To substitute the ‘A’ and ‘X’ keys for “§° (CD} and ‘3" (CR)
respectively. : :

M1040 N/L
1040 OB/1042 N/L (HEX VALUE FOR & “¥°)
1042 09/1058 N/ (" " Y
1058 14/105¢ HN/L «" " " CURSOR DOWN)
105¢ 12/1785 W/ (" n " " RIGHT)

1785 3A 04 OC/178B N/T. (CURSOR DOWN KEY ALTERS OCQO4H
1788 FE 40/1790 N/L (bit 6.)
1790 34 05 0C N/L (CURSOR RIGHT KEY ALTERS 0C05 H
1793 FE 40. {bit 6.)

As regards David Parkinsons letter, 1 feel that the documentation on the
Nascom 2 is very good indeed, particularly the invaluable 1listing of WNWAS-S5YS. The
documentation on his toolkit is more than adequate and I had ne problems learning to
use it.

The article entitled "WHERE" must have been written by a beginner to produce
such a piece of code. Try the following:-

RCAL LOCN D7 00 (MONITOR RTN).
LOCN: POP HL El
The address of "LOCN" is popped into HL.

Please warn NASCOM owners about writing BASIC programs with variable names
longer than 2 letters. Although it is acceptable to do so, MICROSOFT BASIC V4.7 only
stores the first 2 characters of the variable names and therefore cannot distinguish
between 2 different variables having the same first 2 characters. This also applies to
strings.

Finally could you print your prices for advertising in INMC80, as a friend and
I have started a software firm to seel NASCOM Software for the NASCOM 2, and we would
like to advertise in INMCB8O0.

A. READ, Chelmsford, Essex.

(Rates are 100.00 per full page, part pages are charged proportionately - Ed.)

-10-

KBD ROUTINE.

EF O0C 00 21 2A 0OC 36 O0A
2B 36 0A EF 56 41 4C 00
06 08 3E 80 F5 34 34 34
DF 68 Fl OF 10 F6 36 B8A
23 35 2B EF 42 49 54 20
20 20 00 06 08 78 3D DF
74 34 34 34 34 10 F7 23
35 2B 36 Q0E E5 DF 61 EI
3E 0C DF 68 OE 0Ol 06 09
il 00 0OC 79 DF 68 7E Cé
7E 77 1A DF 68 7E D6 7E
77 0C 13 10 EE 18 DB Q0

This routine can be located at any locatiom.

Multiple Processors

A couple of weeks ago, I received my copy of INMC 80/3. A week later I had
built my THIRD Nascom 2. Can anyone beat that? At the time of receiving Issue 3, 1 did
not have a Nascom, but have been sorely tempted each time a new INMC80 came through
the post, or T got a “phone call from the two or three other people I know who have
NASCOM 2°s.

My first one was built in March "80, followed by the second ocne in July ‘80
for use at work. I had to sell my first one in November ‘80 to buy a new car, but
since then I have been planning to buy another. I am pleased to say that the third one
is up and running. Two points though T would mention (1) could not NASCOM manage to
print pages in the documentation squarely on the paper; on all three books I have had
a number of pages are printed at an angle. (2) I feel, along with others, that NASCOMS
should be repaired free of charge within say 90 days of kit purchase if the fault of
non~operation 1s due to faulty chips or a faulty board. There appears to be a Nascom
practise of charging regardless. My first model was fault free, the second had a board
fault, and my third just completed had two faulty sockets, one on the Nas 2 main beard
and cne on the Ram B board.

It 1is good to hear that Nascom have at last been taken over, lets hope some
new products will see the light of day. 1 very much look forward to INMCB80 newsletters
dropping through my letter box, keep up the good work.

R. Scadden, Stratford-on-Avon, Warwicks.

(Faulty Nascoms should really be returned to your distributor, not to Nascom direct.
Before buying check what your distributor’s attitude will be. I think that you will
find most willing to rectify faulty components FOC, if not then go elsewhere - Ed.)

WHITEWASH !

The mag 1is excellent. I find something valuable in it every issue. However,
the article by Rory Johnston was reminiscent, in its attempt to whitewash the computer
industry of moral and political responsibility for what it produces, of the blindness
of atomic scientists to the comsequences of their research forty-five years ago.

Most of the exaggeration of computer power 1is due to the industry’s
overselling of itself. It is not due to the supposedly ignorant laypeople who have,
quite simply, been conned.

Furthermore, whistle-blowing over Big Brother is not in the least bit out of
place but a wvital part of the campaign for the protection and reconquest of human
rights. He claims that voice recognitiom technnlogy can not yet automatically convert
telephone conversations into printed text. Yes, he’s probably right - although even
when it does become possible such technology would certainly remain secret for a very

-11-

long time unless we can prevent it. What he fails to mention, however, is that
computers can be "taught" to recognise keywords in a given person’s speech -
unreliably perhaps, but sufficient to make things a lot easier for Big Brother - such
that tapped phones can signal to a listener when the conversation is getting '"hot".

Unfortunately, human rights and principles do not remain the same - as he
claims - they have to be fought for and protected. Any child watching the cavortings
of our politicians and multinationals can see that they will do anything they can get
away with to keep power and profit in their hands. Computers can and will be used to
help them de just that.

On a more technical note, I wonder if you have come across A.S. Watkin’s
descriptive breakdown of the Nascom BASIC. T have only had i1t a couple of weeks but
found it amazingly useful. It does, however, contain several minor errors and a couple
of '"howlers" which 1 discovered while wusing it to dilsassemble (by hand) some key
sections. I am trying to get a list of these together. Would you be interested in it
together with a review, perhaps?

M. York, London.
(Yes — do write the article - Ed.)

Machine Code Programming

I have just read in the local paper that Nascom have been bought by Lucas
Logic. T hope that this will provide the mnecessary funds to continue to further
success that this excellent product deserves.

Now yet another word on machine code programming. David Lorde’s correspondence
(INMCB0 1Issue 2) on the subject, I think, rings very true. I suppose that for a few
lucky people it will come as second nature. However, for most of us there is no easy
way to learn except for good hard slog. Articles such as David Hunts do wake the slog
less ‘sloggable’ and there is plently of room for such useful material. 1I’ve had my
Nascom 2 {Yawn — not another I°ve had my Superthunderstingcom for ete., ete., - again)

{(Yes) for almost a year and knew a little about BASIC, but absoclutely =zilch about
machine code. 1 began by converting some programms out of previous INMC newsletters
that were written for the T4 monitor to rum with Nas-Sys. (with a certain amount of
guccess).

When the Space Invaders programm arrived all hell was let loose (well, the odd
hobgoblin here and there). After several months of hair-pulling, teeth-gnashing and
velling at the cat (which probably now knows more about machine code programming than
I'11 ever know, but has more sense and lies in front of the fire) I finally managed a
working understanding of the programme. I”ve written several routines to control the
speed of the programm (which was rather breathtaking) and to stop a lot of the on
screen flashing.

So, Ive still got plenty to learn, but 1°ve managed to untangle some of the
mystery., While fiddling about with the ‘Invaders’ programme (which is excellent) what
did amaze me is the speed that the computer works at. It seems, with that program, the
problem is in slowing the computer down. A correspondent in your INMC80/3 mentions a
preferable change 1in the use of the keys to control the movement. The method of
mapping the keyboard is a mystery to me also. Any answers?

A little hint that probably everyone else has discovered but something I hit
on a short time age. When using the M command to modify memory locations the cursor
may be taken back up screen and a previous location changed i.e. just as in editing
lines in BASIC. This can occur across several completely different blocks of wmemory
that may be on screen.

Although people may scoff, I am mostly interested 1In the graphiecs side of
computing (and thus games). So any addition to the graphics capability (hardware or
software) I find of interest. A review of the Bits and PC"s PCG perhaps?

Enough of my waffle, the cats just writing a Basic interpreter,

Yours ADD.OR.INC.ly (moans from background)

D. Hirst, Birmingham.

12~

MISTAKE !

There is a BOOB in INMC80/3. In the drawing of the Reset Jump circuit, pins 1
and 15 of the 74LS257 should be interchanged. The circuit works very nicely, and I
have it running. T also changed my clock link to 4MHz, with great success.

R. 0’Farrell, Co. Wicklow, Ireland.

Documentation

I am writing to reply to David Pasrkinsons letter in Issue 3.

Dear David, Your letter on documentation was very stimulating and prompts me
to answer. Rather than take up your numbered questions I will get straight to the
point.

I would 1like to see source listings included and would be more than happy to
pay the increased costs. This is for two reasons:-

1) Having the source code enables me to easily tailor the program to my needs.

2) I have learnt much by studying program listings - particularly yours! (Revas 1is
an excellent program.) I have just purchased a 1K program from a fellow in Glasgow
that interfaces to a Selectric printer. It came with a commented source listing and
the cassette tape also contained a Zeap file of the source code! This is perfect. T
couldn’t ask for more. I wish other authors would follow suit.

So - please make your toolkit source available as it would make the product
twice as valuable as far as I am concerned.

B. Gilchrist, West Sussex.

UNKILLING

Just a note Iin case anyone has missed it. The magic method in Appendix III of
the NASPEN Firmware Manual will not only recover a text from cold start but alse from
*KILL'.

If you have killed your text by accident, what you do is as follows:

Leave NASPEN by typing “N”.

Type *M101A° new line (backspace over the *n” if it is there)

Type *12 10 2.’ new line

Type “E B806" new line (NASPEN warm start)

Press space bar twice.

Step to end of text using only new line and the space bar; don’t go further
than the last character in your text.

Type ‘*K” then ‘Y’.

Type 'Z° and remove strange character at beginning of text (use ‘I’ and back
space). Incidentally if you get the cursor stuck to the left of it just press cursor
arrow down.

Replace missing characters at beginning of text and reset line length and page
length (1 & 2, 3 & 4).

Hope this saves someone some typing.
P. Copping, Manchester.

Printers and Naspen

Although I have had my Nascom 2 for a year or so now, I have only just made a
subseription to the news letter as I wished to wait for it to establish itself and to
contain a little more information and articles on the 2 rather than the 1.

-13—-

I recently got a Centronics 737 printer and with the help of a m/c programming
genius, a 74123 and a few bits of wire, built a parallel interface, using, of course,
the PI0. (The Centronics 737 is a delight to use and the script 1s most definitely
correspondance gquality. The write up in the March 81 issue of Practical computing is
very fair and I agree with it.)

Now, not a lot of people know this as its never been published before, (I
think), but it is possible to insert printer control codes into Naspen with complete
success!

I have read the NASPEN documentation countless times and there are absclutely
no clues as to this capability.

Some codes appear to be a little tricky, ESCape for example, but if you wuse

the 1little ‘1" (insert), it works perfectly. I won’t provide a list as working them

out for oneself helps to memorise them, but if anyone would like a list, an SAE will
do the trick.

For those interested in how Nascoms are housed, mine for the first 8 months of
its 1life was housed din a settee, complete with PSU. The keyboard cable came from
within to the keyboard which used to sit on my knees and the whole setup was very
domestic but portability was a real problem!

I eventually bought a Ball Miratel Monitor from Electronic Brokers and
shovelled the whole lot in. It was a tight squeeze I can tell you. None the less in
that tiny cabinet I have the VDU and all its PSUs, Nascom 2 and all its PSUs, a board
to give me seperate vert. and horiz. sync which the monitor requires, a tape drive
relay board, a sound board (for the dreaded space invaders), a board for the Sargon
chess graphics and last but not least a board for the printer interface.

T would like a 48K board as well as the 32K board but that is absolutely out
of the question unless 1 bring the Nasbus outside the Ball Miratel housing but as
everything 1s contained at the moment it is very neat and tidy.

Finally, I have worked professicnally with Ap*le, Sh*rp, P*t and the like, and
in my opinion, Nascom 1s streets ahead of any of them!

C.R. Bruce, Farnham, Surrey.

Space Sounds.

Space iInvader freak”’s may find this worth a try, it’s a bit messy and slows
the action down quite a bit, but visitors seem to prefer the game with sound.

The only hardware mod. is to hook a speaker onto port 0, bit 5, (that”s IC 24
pin 15 for Nascom 2), via a suitable buffer of course.

T read somewhere that someone wanted an approximation to PI better than 22
over 7, how about 355 over 1137

R. Cutler, Birmingham.

ZEAF Z80 Assembler -~ Source Listing

GOLO § X % X %X X X X X X X X X X X X
0020 § * SOUND for SPACE INVADERS. X

0030 3 x RAY CUTLER. 20-3-81 x

G040 3 X X % ¥ X X X X ¥ X K X X X X

00460 § Modify the originsl prog. 8s follows -
no70 3 CHANGE 70O

0080 § £1437-39 CR 00 0D ~ Hit by bombs

0090 3 £1469%-97 Ch C6 0C - Bombs hit shield
0100 ;3 £16DE-D7 CD E0 0C - Invaders mMoving
0110 ; £17B?-EE ch A0 0C - Shoot

Ci20 3 £1AZ24-24 D 80 0C - Hit target

ocso 0130 ' OrR{: £0CB8O

0cao
01
ecaz2
6Ca4
acasé
6cas
1CEA
0C8E
acash
0C8F
01C990
0Cez
oCes
VY4
07
0C7e

QCAD
0CAal
oAz
BCAa4
0CAs
06CAR
0CAA
0CAER
oA
NCAF
OLED
GCEZ
0CE3
DCE4
GCE7
0CES

6o
0l
GCC2
aCC4
0CCE
aCCs
aCCA
ceoR
6ECD
BLCF
oCno
0Cnz
cH3a
0cn4
acDy
acn8

0CED
0CE1L
0CEZ
0CE4
0CES
0CES
BCEA
0CEE
0CED
0CEF
0CF O

Fé

R

0&2F
3E20
D3040
3EOE

F¥

D300
3ELS

FF

10F2

Cl

Fi
CDBZLA
ce
gooso0on
gononano

F3

C3

D464
3IEZ0
R300
BEOE

F

D300
3E0E

FF

10F2

Ci

Fi
Copeie
Cy
Gaonaonno
apoooooo

F3

G

Ds0C
BEZ0
D3o0a
BE33

F:' f.’

D300
3E33

FF

10F2

Cl

F1l
CRE?1?
Cce
0po00000
0ao00000

F
S
1401
3EZ0
D308
3E33
FF
D300
3E1S
FF
10F2

0150 CALL1
0160
0170
0180
8190
ozZon
0210
0220
0230
0240
0250
0240
0270
t2a0
DZ?0
0300

Ll

6320 Call.2
6330
0340
0350
01360
0370
0380
0390
0400
0410
0420
0430
0440
0450
64460
6470

LFZ

0490
0500
6510
0520
6530
6li40
0550
0S&0
0g7 0
0580
0590
0600
0610
0620
0630
0640

caLL3

L3

0660
0470
&80
B420
86700
6710
0720
8730
0740
0750
0740

CALL4

L4

-14-

FUSH
FUSH
L.D
LD
ouT
LD
RST
ouT
LD
RST
DUNZ
FOF
FOF
CALL
RET
DEFE

FLSH
FLSH
L.
LD
auT
LD
RST
auT
LD
RGT
DUNZ
FOF
FOF
CALL
RET
DEFE

FUSH
FLSH
LD
LD
ouT
LD
RGT
aur
LD
R&ET
DUNZ
FOF
PO
Call
RET
DEFE

FLSH
FUSGH
LD
LD
ouT
LB
RET
GuT
L.D
RST
DJNZ

aF

EC

B, £2F
Ay E£2Z0
(0}, A
A, £0B
£38
(DY, A
by, £15
£38
LF1

B

AF
LiABZ
FILL

6 600000 0

Al

G

By 64M
Ay £20
(0), A
A, LOB
£38
(), A
A, £E0B
£38
LFZ

B

aF
L1969
0006000

0 07 FILL

A]'.:'
B |
B, £0C |
A, £20 |
(02, A

Ay £33

£38

(02, A

b, £33

£38

L3

BC

A

£19E9

0608 000 03 FILL

aF .
BC

B, 01
A, £20
(U)p # ;
A, £33 ;
£38 *
(0, A
Ay £15
£38
LP4

15—

0CFZ 1 0770 FOF EGC

0CF3 F1i 07806 FOF AF

0CF4 CDE6G1Y 0790 EALL £19E6

0CF7 C9? 0800 RET

OCFeg 00000000 0OB1L0 DEFEE 0 0 0 0 0 0 O 03 FILL

000600046

oooo F5 0830 CaALLS FUSH aF

opor .5 0840 FUSH EBC

0D0Z D&64 o850 LD B, 100

op04 3EZ20 0840 LFS LD A, £20

8D0Ss DAOD 0870 QuT (0>, A

0D08 2JEST 0680 LD By, £&63

opoA FF EERed) RSET £38

oROE D300 02040 QUT €03y A

onDoD 3E&I 0910 LD fiy £63

ODOF FF 090 RST £38

o6D10 14F2 930 DUNZ LFS

opig Ci1 0940 FOF BC

onp13 Fil N950 FOF AF

D14 ChE&1LE 960 GAlLl EiBES

0D17 C9 0970 RET
0980 ¢ If vou feel that "FLAYERY flashes lLoo
09290 3 many times, change £IiCCA
1000 ;3 After loading and modifgying, write a
1010 ;3 tape from EOCE80 to £2000.

CLUBS

Once again a list of NASCOM USERS anxious to communicate with others in their
respective areas.

KENT - I would like to help form a club/exchange information! Contact L.S. Fisher, 21,
Manwood Avenue, St.Stephens, Canterbury, CT2 7VAH.

SCOTLAND (West of) - I would like to make contact with other Nascom users. Mr. Tom
Donald, 2 Glasgow Street, Glasgow, GlZ 8IN. (041-334 8931).

N.IRELAND — Help me set up a club! write to Mr. R. A. Lough, 92 Station Road,
Greenisland, Co. Antrim.

ESSEX (Ilford). Anyone willing to help form a local group please contact Mr. §. P.
Lee, 37 Malvern Drive, ILFORD, Essex, IG3 9DP.

BELFAST, N. Ireland - my friend and I are keen to form a local users c¢lub. Anyone
interested please contact Mr. R. T. Martin, 30 McCaughan Park, Belfast, BT6 9QJ.

HELP NEEDED - Any Nascomaniacs in my area? I'm awful lonely - and struggling! Mr. D.
Platt, 4 Royal 0Oak Close, Machen, NEWPORT, Gwent, NP1 85P, Mid Glamorgan, 5. Wales.

HELP OFFERED - "I work in the engineering department of Plessey where there are
several NASCOM 2 owners, {plus ZX81"s, Tandy's etc of the uneducated). If is not
beyond the wit of man that if you need someone to help out with answers to hardware
and system questions I will have a go!" Mr. P. R. Verity, 1l Liberty Lane, Addlestone,
Surrey, KT13 1lLU.

A NEW COMPUTER MAGAZINE. The first issue of "YOUR COMPUTER" contained articles on
Basic language, kit building techniques, a page to answer technical queries plus games
ete etc.

Computer Club will be a regular section of the magazine where members of local
computer clubs can write advising new dilscoveries, special events/prolects, Llad
general advice about how to start and run a club.

Let’s get them interested in Nascom’s! - submit your progs and ideas to: Your
Computer, Quadrant House, The Quadrant, Sutton, Surrey SM25AS.

-16-

Dateline Algeria from Richard Bateman

Dear INMCS80,

BLACK FLASHES

I agree with S.C. Willmott that the black flashes are irritating. To get rid
of them should be an easy matter of connecting the BUSREQ line to the video blanking,
so that the 280 does not access the video memory during the display time. This would
cause the Z80 to work a little slower than it does at the moment, but it is only like
having a 2MHz clock. Note, it could still suffer from the dreaded black flasher , but
only if the Z80 was making an access to the screen at that moment. The loss of speed
can be calculated as:

loss% (1-(L6%14%48) /(320%64)
1-{time displaying)/(total frame time)
approx 50% :
This would be equivalent to a clock rate of 2MHz. The lines wmust be tied FALSE so that
they don’t do funny things while the bus is idle. I have not tried this but it should
work.

BASIC TOOLKIT (Parkinson)

With regard to Mr Parkinson’s documentation, I think that he has got it about
right, except that as his toolkit tends to be disabled by any sort of reset, and has
to be reloaded, (this is a serious drawback), a mention of how to effect a warm start
would be a help. (You ain“t read the instructions, execute an address three bytes less
than the top address used by “Toolkit’, and it’ll warm start. Ed.) On the toolkit, a
few unwelcome suggestions are as follows. The find command could be made to translate
the codes by using the BASIC itself. If the string was entered as a line, say line O,
then let the Find do its comparison. After the command, the line could be deleted.
Long lines could be handled by looking for a "\" as the first character, and then
including the previous line as the start of the basic line, using a modified INLIN. It
is possible to keep making suggestions, but then it gets a bit out of hand. The
renumber and cross reference are worth it alone, with the others as a bonus. The find
needs to use reserved words, and a warm start should be enough to make an issue 2.

NEW RAM64 BOARD and THE SON OF PAGE MODE

I have installed a RAM64 board onte my N2, which means that I now have 96k on
line. The page mode 1s installed on both RAM B and the RAM64. The RAMH4 worked first
time and without problems, but the RAM B started giving problems for the first time in
a year. I have not tracked down the problem yet, but sometimes it works and some times
it doesn’t. One of those! Since I only have a 3A psu, it may be loss of power, but I
will try putting heavy wires from the psu to the bus.

An interesting problem arises when I try to use BASIC. The BASIC initialises
Ok but as soon as 1 hit a key, it crashes. Particularly when I have the Toolkit
loaded. It could be something to do with the I0 select line wused by the page mode
hardware. It is surprising that Nascom used 128 ports! (What? - Ed.)}

A weakness of the N2 memory map means that the workspace of a lot of the
firmware 1s not, and cannot be put onto a page. This is a serious draw back to the
system as designed. Another drawback is the inability to use DMA to the <c¢losed page.
When (if) 1 design my DMA disk interface to run with my (also yet to be designed)
super disk system, I won't be able to swap closed pages to provide a disk cache
.memory. T can’t think what I would use 1t for.veeeavveessnn

That aside, the page mode is a bit limited in its use because the system turns
off whole boards at a time. That means it is necessary to copy the contents across
from one page to the other of portions that are common. Also, addresses occupied by
firmware can’'t be got at, such as the bottom 4k, the top 8k. A slight modificariom tO
the board would allow a substantial increase in flexibility. If each card had its own
port number, and the 8 bit latch was used to enable either blocks of memory (in 16K

-17-

blocks of seperate read and write, or 8K blocks of R/W memory, working on the memory
decode signals), or to enable banks of memory. In this way, a single card could have
all 4 banks addressed to the same 16k, and the software would only ‘enable one at a
time. This would allow programs to use this area as fast disk space. Or as "protected”
space for saving back-up copies of programs you have just written but not tested (you
know ... the ones that write all over memory for you in less time than it takes to hit
reset).

SYSTEM GROWTH OUTSTRIPS PSU

My intention 1is to go over to a complete RAM system with a disk and an
operating system. CP/M would be nice but I think the investment too high at the
moment. I would have to throw away all my current software, unless someone wants to
make .an offer for my firmware. (Cost was about 200.00+VAT).

My latest addition has been a 12inch monitor which replaces a borrowed B/W TV
I wused to think was quite good until I got this. I am now thinking of shoe-horning my
N2 into the box, as there is just room if the whole problem is the noisy £fan
that I must have to keep the smell of burning off the 3A psu which is giving its all.
If I build a new 5A psu on the back panel then maybe the rest will fit inside and 1
can throw away the noisy fan.

One mod I would like to see is an 80 by 24 line screen so that T can see what
T am getting with NAS-PEN. (Just read this issue, but the snag is a new NAS-PEN. Ed.)

Rename the bus, NASty-BUSiness. You could have it on your adds - writ large,
so to speak.

Keep up the good work, it wouldn”t be the same without INMC80 coming out with
so many goodies.

Richard Bateman.
Algiers, Algeria.

INMCS80

INMC80 SUBSCRIPTIONS

I would like to subscribe to INMCB0 News for 12 months, starting with the
INMC80-5 issue. 1 enclose my cheque / postal order / international money order (but
NOT a French cheque) payable to "INMC80", value:

UK Subscriptions: 6.00
Overseas Subscriptions: 7.50
Name : TO: INMC80 Subscriptions,
c/o Oakfield Corner,
Address : Sycamore Road,
AMERSHAM,

Bucks. HP6 5EQ.

PLEASE NOTE: This address has kindly been “loaned” to INMC80 as a postbox. It is NOT
possible to communicate with INMC80 by “phoning this address or by calling in person.

~-18-

PASCAL

HISOFT NASPAS FOR NASCOMS: A REVIEW. by R. 0’Farrell

The HISOFT NASPAS compiler comes on tape in two versions. One runs under
HISOFT’s own NASMON, the other, with which we are here concerned, runs under Nas-8Sys.
On the review machine, it is running under Was-S5ys 3, but I see no obstacle to it
running under Nas-Sys 1. As supplied, you receive a tape, recorded in CUOTS at 300
baud, and a documentation package consisting of a manual of 9 A4 pages to the NASLIN
editor supplied as part of the package, a manual of 63 pages to the NASPAS itself, and
a three page implementation note describing how to get the package running under
Nas=Sys.

The tape loaded first go, with no tape errors. As the program is so long, the
tape 1s recorded on both sides. After loading the first side, which is set up using
the ‘G’ command, the tape is turned over and the second side loaded. When loading 1is
finished, the Wascom prompts with a message to

Ex*%% XXXAX YYYY

where the **** address is supplied (43BlH in my copy) on the screen, XXXX marks the
start of the compiler proper, and YYYY marks the start of the runtime support
routines. The compiler is 27AAH bytes long {(just under 10K) and the runtimes are OB88H
bytes long (just under 3K). The implementation note supplied indicates that the
compiler should not be located below 1COOH in memory, presumably as it will overwrite
itself 1im the relocation. Normally, the compiler and runtime routines would live at
the top of memory, and suggested addresses are supplied in the implementation note. In
a 32k system, the compiler lives at 5CCEH, and the runtimes at B8478H. In a 48k system,
the addresses are 9CCEH and C478H. The note doesn’t give the addresses for a full
system, but they are easily calculated to be CCCEH and F478H.

When the relocation has taken place, the Nas-5ys message is displayed, and an
execute address for the compiler. In the case of the three memory sizes 1 have been
discussing, these addresses are S5F9EH, 9F9EH, and CF9EH. This address should be
carefully noted, as it 1is the entry point for the compiler at all stages. The
relocated compiler can now be recorded on tape, including the runtime support
routines. According to the implementation note supplied, the original compiler - that
before relocation - can not be dumped to tape.

All set? Then we c¢an enter the compiler. WAIT! The implementation note
requires four parameters to be specified along with the execute address - the
positions of where the code generated by the compiler is to be placed, the location of
the runtime stack, used for variable storage etc., the address from which you would
like the compiled code to execute, as opposed to where it resides during compilation
(this facility allows the code to be placed on top of the source or even of the
compiler itself. NOTE: NOT the runtimes!) and finally the position of the start of the
current text file. However, this complication of specifying four parameters is
simplified for us by the compiler writer. If these parameters are entered as 0 - NOT
left blank!~ then the compller automatically allocates default values. For general
messing about, this is quite satisfactory, and allows you the option of specifying
your various workspace areas etc. as you need. Do not forget to enter the four zeros
seperated by spaces after the execute address. Otherwise very unpleasant things may
happen!

The NASLIN editor supplied is very similar to a BASIC line editor, or to the
LEAP editor. Each Line has a number, and the editor puts them 1n thelr correcl place

relative to each other.

«]19-

There are 10 commands. These are:

C to cause compilation

‘D’ nn mm to delete lines nn to mm inclusive

*F” “string’ to find occurances of “string”, which is delimited by single
quotes

*I” nn mm to cause automatic line numbering of input lines, starting at nn,
increment mm. Defaults are 10 and 10

‘L’ nn mm to cause lines nn to mm to list

M’ returns to meonitor

*N° nn mm renumbers the existing program starting at nn, increment mm.
Defaults 10 and 10

*p’ puts the program on tape in ‘“generate” format. The program can be

read back into memory from the monitor, and the compiler cold
started. Then the ‘W’ command is used to open the file.

‘R’ runs the program

‘W opens a file after reading t in from tape. It should be used
everytime the compiler is restarted with a program in memory, as
the compiler cold starts each time, and the W reopens the file.

So much for the editor. It is fairly straightforward, particularly if you have
been used to BASIC or ZEAP. One drawback - the line length is limited to 48 chars by
Nascom’s screen editing facilities, but the compiler can run off sourcefiles written
on other types of editor.

Writing a program is straightforward enough with this editor. Having written a
program, we ESC to leave the I mode. L to list, P to save to tape (in case of
catastrophes ~ which never, never happen to us! What never? WNo, never! What never?
Well, hardly ever! with acknowledgement to Gilbert and Sullivan). Having a tape of the
program, we can now hit C to compile. Naturally there will be errors. The error
messages are a display of *ERROR* nn, and an arrow indicating the symbol of the
program which caused the error to show up. The error numbers are listed on page 41 of
the manual, with a good explanation of each. Hit the E key, and you are returned to
the editor. Hit any other key, and compilation proceeds until the next error.
Frequently, one error will cause a number of others, so it is a good idea to abort
after about four or five. As compilation proceeds, listed alongside the lines 1is the
address where the code produced resides.

Having corrected the errors, and achieved a successful compilation, one 1is
then given the choice of Run/Tape/Editor? Answering this with R causes the program to
run, and return you to Nas-Sys. Hitting T causes the object code to be dumped to tape
in generate format, and you are returned to Nag-Sys when finished. Hitting E (or any
other key) gets you back to the editor.

When the program is running, if the correct options are set, you can interrupt
the compiler, and cause it to pause. If during such a pause you hit E, then you are
returned to Nas-Sys, and the program aborted. Any other key causes resumption of the
program. There are a number of compller options which are described in the manual.
These all default to reasonable values. They are concerned with checking the keyboard
for dinterrupt commands, checking for possible stack overflow, checks on array bounds,
checks on arithmetic overflow, and suppression of all 1lines being 1listed during
compllation unless in error. There is also another option under NASMON, which allows
an external printer to be driven. Much to my regret, the author of the compiler has
suppressed this in the Nas-Sys implementation, and suggests that one uses the X option
instead. This is the only complaint I have! It is possible to obtain 1listings using
the Nas-Sys X and U routines.

In a seperate article T have listed all the major facilities offered by this
compiler, so0 do not intend to repeat them here. Suffice it to say that this is a very
powerful implementation of Pascal, albeit not a full Pascal. Compared with 8k RASIC,

-20-

this is as powerful as a 12k BASIC, if not slightly more. A comparison with BASIC is
hardly fair - a bit like comparing chalk with cheese. This compiler complles fast, and
produces fast code. An example: a bubblesort of 255 numbers in machine code is 2 secs,
in Pascal 15 secs, and in BASIC 300 secs.{(4 MHz machine)

This implementation of Pascal offers the ability to define special types of
data, which would allow programs tailored precisely to a problem to be written. It
also offers a few extensions to standard Pascal - in particular PEEK and POKE, to
allow memory to be accessed and altered. The PEEK and POKE are especially interesing,
as they allow TYPEs to be PEEKed and POKEd. This allows a very simple way of moving
data around for processing. It would, for example, be possible to define a TYPE
CRT=ARRAY[0..1023] OF CHAR, and then to say POKE(#0800,CRT) to change the entire
screen at one fell swoop.

The compiler departs from standard Pascal in another few instances. It insists
on Strong Typing, which causes the programmer to think a little harder, but cuts down
on programming errors. Also avallable are the ability to recognise HEX integers, and
to write them. TIf you have ever used PEEK and POKE in BASIC, you will know how
difficult it is to figure out the decimal equivalents of hex addresses. Not a problem
in NASPAS! Also supported are the Nascom Graphics, using the NASGRA ROM, for both N2s
and Nls with Econographics. LINE(ON,0,0,44,44) will draw a line from (0,0) to (44,44),
diagonally across the screen. The arithmetic is of the accuracy of 8k BASIC - 6/7
digits. The trigonometric functions are not implemented, but these are easily written
using the ability of Pascal to support recursive calls. It is possible, using the
supplied instructioms, to add predfined functions and procedures to the compiler, in
much the way that the XTAL BASIC is extendable. The manual supplied is much more
complete on this aspect than XTAL BASIC manual. The display of real numbers is always
in scientific notation, but again that could be easily altered by a procedure to
format output as desired.

I have discussed this compiler with a few other computer users, and we have
come to the same conclusion. Tt is most impressive, and will give an excellent
introduction to the capabilities of Pascal.

The manual states categorically that it does not purport to teach Pascal, and
refers you to several other books. These are:

"Pascal User Manual and Report", Jensen and Wirth, Springer Verlag
"pPagcal, an Intro. to systematic programming', Findlay and Watt,Pitman
"Introduction to Pascal', Welsh and Elder, Prentice Hall

The last two of these are better oriented to the beginner, who has not
programmed in high 1level languages before to any great extent. To them can be added
the following two books:

"Programming via Pascal", Rohl and Barrett, Cambridge University Press
"Introduction to Pascal', Zaks, Sybex

The first of these two is my own favorite, but they are both most readable.

This compiler is available on tape from:
Hisoft,
60 Hallam Moor,
Lidem
Swindon SN3 6LS

Tt costs 35.00. In the manual reference is made to the fact that the runtime

routines can be supplied in EPROM. I have no price for this, but am sure that Hisoft
W1lll De aple To quore.

I RS rS

-21-

PASCAL IMPLEMENTATIONS FOR THE NASCOM. by R. 0°Farrell

There are currently available FOUR Pascal compilers for the Nascom. The
purpose of this article is to tabulate them against each other, so that prespective
purchasers can see how they differ in the facilities offered. It does not purport to
be a review, as it is prepared solely from the circulated descriptions available from
the suppliers. Prices are correct to the best of my knowledge at time of writing (2nd
May 1981), but these should be confirmed by reference to the suppliers, who will no
doubt answer any queries. I have only seen two of these implementations, the WNASPAS
and the INTEGER PASCAL, so can only write from personal experience on these two.

The available compilers are:

dedkdekdekhkkhhkhkhhhhhhhhkhkhkhhhkkhhrrhhhhkhhhhkhhhkhkhdhkhhkhhhhhkhkkkkhhbhhhdrhhhhhhkhhhikd

1. INTEGER PASCAL Datron Interform Ltd,
2 Abbeydale Road,
Sheffield,
Cost 35.00
CONSTANTS: -32767 to +32767
Hexintegers %0000 to ZFFFF
VARTABLES: integers:-32767 to +32767

Hexintegers %0000 to ZFFFF
ARRAY{] of INTEGER

characters:ASCII
OPERATORS : integer: + — OR * DIV MOD AND SHL SHR
boolean: = < > <> <= >=
FUNCTIONS:
PROCEDURES: value parameters
CONTROLS: BEGIN - END
IF - THEN - ELSE
CASE -~ QF - : -~ ELSE - END
WHILE ~ DO
REPEAT - UNTIL -
FOR - TO/DOWNTO - DO
CALL (=)
INPUT/OUTPUT; READ (=)
WRITE(-)
OTHER: Comments are supported. The MEM[array] allows access to any byte of

memory, and the hexintegers allow easy reference to a particular byte of menory.
Suffixes in the READ and WRITE statéments allow values to be input and output as
decimal, hex or ASCIT

ACCURACY: Only integers are supported, so this 1is not a package for number
crunching.

kkkkkhhkkkhkkhkhhkhhkhhkhkhkhkhkkkhkhhkhkhkkhhkhixhhhhhhhhhhkhhhhkhhkkhkhkrkhhkhhhhkhhhhhhkhkhhkkikkk

2. ENERTECH PASCAL 16/C ENERTECH Ltd.,
32 Gildredge Road,
Eastbourne,
East Sussex BN21 4SH,
Cost 40.00

CONSTANTS: numerical:ranges +/~ 0.1469 E-38 to +/- 0.1701 E+39

character and character string:ASCII

-29-

VARTABLES: integer:range +/-65535
real:ranges +/- 0.1469 E-38 to +/- 0.1701 E+39
character:ASCII
OPERATORS : integer: + - * DIV MOD
real: + - %/
real (non-standard) :** {exponentiation}
boolean: NOT = <> < > <= >=
FUNCTIONS: integer:ABS SQR
integer-real ;ROUND TRUNC
real:ABS SQR SQRT SIN COS ARCTAN LN EXP
real (non-standard) :RCPL SIND COSD ARCTAND {degrees}
LLOG {to base ten}
integer-char:0RD CHR
PROCEDURES: value and variable parameters
CONTROLS: BEGIN - END
REPEAT - UKRTIL
WHILE - DO
FOR - TO/DOWNTO - DO
IF¥ - THEN
IF - THEN - ELSE
INPUT/OUTPUT: READ READLN EOLN
WRITE WRITELN: expressions and character strings

OTHER: Comments are supported, as is recursive syntax.

This package runs in 16k. Tt includes a system bootstrap, the MAPP
1-47Z floating point package, MAPP extension, Pascal interpreter and compller and a
screen editor. It compiles to compact, relocatable MAPP code. The editor required is
also supplied.

ACCURACY: Bight significant figures, one before the decimal point.

dkkdkdkdehkkkhkkkkhkhkkhkhhhhkhrhhhhihhhhhdhhhkhdhhhhhhhhkhhkhhkihhrhrkhkhkkhhhhhkhrkrkhhihk

3. HISOFT NASPAS HISOFT Ltd.,
60 Hallam Moor,

Liden,
swindon SN3 o6LS

Cost 35.00

CONSTANTS: Identifiers may be specified as constants and assigned to
numeric values, character values or the values TRUE and FALSE
Predefined constants: MAXINT = 32767 {largest integer}
TRUE or FALSE: Boolean constants
ON OFF INVERT: Tdentifiers of type COLOUR

TYPES: INTEGER:-32768 to +32767
REAL: 7 significant figures, 3.402825 E38 to 5.87747 E-39
BOOLEAN:TRUE AND FALSE
CHAR:256 characters
ARRAY:arrays, with elements of any type
SET:of any simple TYPE
COLOUR:used in conjunction with Nascom block graphics

routines

OPERATORS: assignment: :=
arithmetic: +, -, *, DIV, MOD, /
relational: = <> < > <= »= IN

logical: NOT OR AND
set: + - *
FUNCTIONS: Predefined functions:ABS CHR EOLN INCH ODD ORD

-23-

PEEK PRED RANDOM SQR SUCC USER ROUND ENTIER FRAC
TRUNC POINT
PROCEDURES: Fully recursive procedures are supported. Value or variable
parameters are supported.
predefined procedures: HALT PAGE POKE READLN RESET READ
WRITELN WRITE WRITEHEX LINE(COL,X1,Y1,X2,Y2) {to draw a
line from X1,Yl to X2,Y2} USER GRAPH
STATEMENTS: BEGIN - END
IF - THEN - ELSE
CASE ~ OF - ELSE/END
WHILE - DO
REPEAT - UNTIL
FOR - TO/DOWNTQ - DO

OTHER: This implementation comes with its own integral editor, which allows a
program to be written and saved to tape. It allows the table of standard predefined
functions and procedures to be extended readily and simply. It is well documented. Tt
gupports the block graphics of the NASCOM 2, or N1 with Econographics.

ACCURACY: 8ix to seven significant figures.

4. Polydata Blue Label Pascal Poly-data microcenter ApS,
Strandboulevarden 63,
DK 2100 Copenhagen,
Nenmark,
Cost approx 50.00

This implementation may also be available from some of the Nascom dealers 1in this
country, but I have not been able to obtain confirmation of this report.

DATA TYPES: REAL 11.5 significant digits (!!!), 1E-38 to lE38
INTEGER 16 bits, -32768 to 32767
STRING Up to 255 characters
BOOLEAN Logical variables
ARRAY..OF with multiple dimensions
OPERATORS ¢ + - % / DIV MOD SHIFT AND OR EXOR = <> < > <= >=
FUNCTIONS: ABS SQR SQRT SIN COS ARCTAN LN EXP INT FRAC SUCC PRED ODD
TRUNC ROUND ORD CHR LENGTH MID LEFT RIGHT CONCAT ADDR
RANDOM POINT KEYBOARD
PROCEDURES: WRITE WRITELN READ READLN LOAD SAVE CALL SCREEN PLOT
STATEMENTS: BEGIN - END
FOR - TO/DOWNTO - DO
REPEAT - UNTIL

GOTO
IF - THEN - ELSE
WHILE - DO
CASE -~ OF - OTHERS
INIT - TO
OTHERS : The specification of the editor supplied looks impressive, supporting

a window on the text, to allow 80 char lines to be handled with ease. It supports 27
editor commands. User written machine code subroutines are supported using procedures/
functions declared as EXTERNAL.

ACCURACY: 11.5 digit accuracy claimed.

oo e i e e e e e T ¢ Fe T 3 v e e e T e o v e v vk de e oy e ek e de e ek ek ok A ko kokk Rk k kkkkhdkddhkdhhhkhkhkkhkkkkhhbhhdkdkk

-4

NEWBUS

NASBUS -~ where to 7 D. R. Hunt

For the first time we publish details of “80-BUS’, which for legal reasons
can’t be called Nasbus, but is for all intents and purposes Nasbus spec. issue 4. Most
importantly it 1includes system timing, which has never been published before. This
includes some minor changes which improve the bus whilst not changing its compatibilty
with existing Nasbus. (The changes are discussed later.) This is the bus standard that
the new Gemini computer uses, and it is hoped that it will be made ‘public domain’ so
that anything that is designed to use it will remain compatible with both Nascom and
Gemini products.

It is my personal hope that Nascom and Gemini will get together to provide a
single bus specification under the guidance of a technical committee independant of
any manufacturer. That way it will be under firm control from day one and the chaos
that developed around the $-100 bus can be avoided. Tt took six years before the IEEE
stepped in and said, "Look lads, you’ve got a standard, don’t keep ‘bending’ it to
suit yourselves. We're going to take it over, publish it as a standard, and if you
don’t conform, then you can”t call it 5-100." Wishful thinking? I think not, if common
sense prevalls at this stage, we could even end up with a European standard 280 bus to
rival 5~100, to the benefit of all end users. Mind you, manufacturers might not be too
happy about it. (Manufacturers don’t like being told what they can and can not do by
external committees.)

As to the steering committee, I hesitate to volunteer ‘us’, although we have
enough technical expertese available, (including access to the originators of Nasbus).
It really requires someone with more welght. Some organisation like the BSI or IEE
would be more suitable (and acceptable to the manufacturers), although they may
consider “some poofling little computer bus’ as being beneath them.

80~-BUS, a functional description by Gemini Microcomputers Ltd.

The Nasbus, unlike many other bus systems, has had a very ordered development.
However, when we started developing a new range of cards it became apparent that a new
revision was urgently required. After a great deal of careful thought and many hours
of deliberation the following document was drawn up. It expaunds on the third issue of
the Nasbus functional specification and also attempts to anticipate some of the
possible future developments of the bus.

The original Nasbus specification made provision for the extra address and
data lines of 16 bit processors. Careful consideration reveals that the bus would not
be suiltable for this, and so a number of new signals have been defined for the lines
made free. The importance of good ground signals can not be overemphasised, and so
extra ground lines have also been added.

When defining this bus a great deal of thought went into deciding whether or
not to maintain the NAS MEM, NAS 10, and DBDR signals. These signals are particular to
Nascom 1 (and NAS IO also to Nascom 2) and are unlikely to be required by any future
cards. They therefore constitute a “nuisance’. However, for the sake of compatibility,
to avold the 5100 situation, and with pressure from INMCBO it was decided that 80-BUS
would maintain support for these signals.

Because of the above considerations 80-BUS remains fully Nascom 1 and 2
compatible. We therefore hope that Lucas will also adapt this specification. 80-BUS
will probably not be registered by Gemini, and consequently will become public domain.
It is our wish that an independant committee be set up to “guard” the specification of
the bus, and to allow any manufacturer who produces a card that fully complies with it
to advertise accordingly. The 80-BUS is a Z80 bus and no attempt has been made to make
it compatible with any other processor.

One final point is that all cards, including the bus master, should provide a
means for being switched out of the memory map under software control. This may be by
means of implementing the Page Mode structure, or by some alternative method. This
condition also applies to any I/0 card that is memory mapped.

Many thanks to David Lewis for the many hours of assistance in drawing up this
specification.

-25.

80-BUS pin allocation

* % N N ¥

*

AUX CLK
/RAM DIS
/RESET SW
/NAS MEM
/NAS IO
/DBDR

/RESET
JHALT
/BAT
/BAO
/BUSRQ
1EI
1EO
/NMI
/INT
JWAILT
/RFSH
M1
/IORQ
/MREQ
/WR
/RD
AQ

Al

A2

A3

Ab

AS

A6

A7

A8

A9
Al0
All
Al2
Al3
Al4
Al5
Al6
Al?
Al8
GND
1o

Dl

D2

D3

D4
D5

D6
n7

DESCRIPTION
Ground
Ground
Ground
Ground
System clock
A low on this line initiates a short pulse on line 21
Reserved for future use
4MHz clock signal (optional)
Ram disable
Reset switch
Memory decode to Nascom 1
1/0 decode to Nascom 1 and 2
Data bus drive, used to change the direction of the data bus
buffers on the buffer board or Supermum.
50uS reset pulse, resets entire system.
Z80 halt signal
DMA
daisy chain
Z80 bus request
Interrupt
daisy chain
ZB0 NMI line, (not used by N1)
ZB0 interrupt line
Z80 wait line
Z80 refresh signal
Z80 opcode fetch signal
Z80 input/output signal
Z80 memory signal
Z80 write signal
780 read signal

Z80 16 bit
address bus

Optional implementation
for extended
addressing.
Ground to seperate the data and address busses.

Bidirectional data bus.

-26-

58 RSFU Reserved for future use
59 INT C Interrupt

60 INT 1 request

61 INT 2 lines

62 INT 3

63 /PWRF Powerfail warning
64 AUX PWR Backup power

63 NDEF 1 Not to

66 NDEF 2 be defined

67 GND Ground to seperate power and signal lines.
68 -5V

69 -5V

70 -12V

71 -12v

72 keyway

73 +12V

74 +12v

75 +5v

76 +5V

77 +5V

78 +5V

Notes

1} * is an open collector line.

2} IEI to be linked to IEQO on cards not using the interrupt daisy chain.

3) /BAI to be linked to /BAO on cards not using the DMA daisy chain.

4) Bus drivers must be able to drive 75/15 U.L.

5) Bus receivers must not load the bus past 1/0.25 U.L.

6) Bus master to pull up all open collector lines with 2k2.

7) Bus master to pull up the following lines with 10k, /HALT, /MREQ, /IORQ, /RD, /WR,
/M1, /RFSH.

8) Bus timing reference point is pin 6 of the Z80. As the bus is in essence a buffered
280, the timing of bus signals is as the Zilog/Mostek Z80 data book. All Z80 signals
are buffered onto the bus with 20nS +/- 10nS buffers, the sole exception being the bus
clock which should be 20nS$ (+/= 10nS) ahead of the Z80 clock (pin6). The timing of
other signals is detailed in the description of the particular gignal. All expansion
card timing must, however be referenced to the bus.

9) Cards using /BAI, /BAO, IET & IEO should pull them up with 2k2.

10) Bus termination. Long buses may require termination. 220R on each line to a 2.6v
low impedance source should solve 99% of problems.

11} Grounding. The ground line to the PR should be as short as possible and as thick
as possihle.

12) The names of the various bus signals are as detailed above, please de not change
them or abbreviate them, ie AUX CLK not AUX CLOCK or A CLOCK etc.

Comments
The following is a 1line by line description of the bus and should help resolve any
ambiguities.

Lines 1~4, GND.

The quality of tie system ground canmot be overemphasised. Ground noise
problems were at the root of the now infamous Nascom "Memory plague". The faster that
systems go the mare eritieal the noise problem will become. Noise problems will
manifest themselves as a generally unreliable system with a predilection to do "odd"
things.

-2
Line 5, CLOCK.

This 1line 1is 1important as all the bus timing is derived from it. It should
spend at least 46% of its time below VOL (0.4V) and at least 46% of is time above VOH
{2.4V), it has the other 8% spare to go up and down. The clock on the bus should be
20nS (+/- 10nS) ahead of the clock on pin 6 of the Z80.

‘Line 6, /NMI SW.

Provision has been made on the bus for an NMI switch and this line is to be
held high by the bus master. Grounding it will initiate a short pulse on line 21 and
the Z80 /NMI input. Users are cautioned that switch bounce may cause more than one
NMI.

Line 7, RSFU.
This line is reserved for allocation at a later date, please do not use.

Line 8, AUX CLK.

This 1line is a new allocation. Many boards (eg disk controllers) require a 1,
2 or 4 MHz signal. This was easily provided when the CPU clock was 2 or 4 MHz, however
the advent of the 6 MHz Z80 changes the situation. Any bus master not running at
either 2 or 4 MHz must provide a 4 MHz clock on this 1line. Designers of expansion
cards should take note of this and provide a link to allow the board to use this line
instead of line 5.

Line 9, /RAM DIS.

This signal 1is intended to prioritise memory. Normally this signal would he
generated by memory on the bus master, an EPROM card or any other high priority memory
when a memory read took place. A RAM card would normally gate /RAM DIS with the output
buffer, so that in the event of /RAM DIS being asserted the output buffer would fail
to be enabled, this would have the effect of "overlaying" RAM with EPROM/ROM. /RAM DIS
should not inhibit a write cycle; it should also remain high for any cycle apart from
a memory read. '

Line 10, /RESET SW.
A high to low on this line will initiate a reset cycle. It is intended that a
switch be connected between this line and ground. The actual RESET line is line 1l4.

Tine 11, /MAS MEM.

This =signal 1is only used by Nascom 1 and is asserted when a Nascom memory
address is detected. It would normally be provided by a memory board and would
typically be 0C00H to OFFFH or FOOOH to FFFFH. This is an obsolete signal and no new
boards that require it should be designed. This line used to be called MEMEXT.

Line 12, /NAS 1I0.

This line used to be called I0EXT and many people persist in still calling it
that, even though the two are different. Tn its original form (note that it was active
high) it would be taken high to indicate .an 1/0 address external to the Nascom, in its
current form it is taken low to indicate a Neccom 1/0 address, that is to say that it
looks for a Nascom 1/0 address as opposed to looking for an external address. /NAS I0
should be taken low within 50n8 of a Nascom I/0 address and /IORQ, (referenced to the
bus). In 1its original form the onboard ports on the Nascom would remain enabled for a
short fraction of an external I/0 cycle (the time taken to detect an external address
and assert TIOEXT) and this was the cause of many obscure problems. If you have
problems a good test is to write a short machine code routine to continucusly write
80 to port O0O8H. If the breakpoint register display comes up you have a problem, if
not you don’t. /NAS IO is a obsolete signal utilised by Nascom 1 and 2 and all new
designs should incorporate full 1/0 decoding.

~28~

Line 13, /DRDR.

This signal 1is wused by the Buffer board and Supermum with Nascom 1. It
controls the direction of the data bus buffers. When an expansion card outputs data to
the bus this line must be taken low, normally this is the same signal as used to turn
on the output buffers. Despite being only used by expanded Nascom ls it is felt that
this signal must be provided on all expansion cards. While /DBDR should ideally go low
before the data bus driver is enabled, it must be low within 30nS of the data bus
driver being enabled and must release /DBDR within 30nS of the data bus drivers being
disabled.

Line 14, /RESET.

This 1line is the ‘'cleaned up" version of line 10. It is important that the
falling edge of the reset pulse on this line be synchronised with the falling edge of
/M1, and the bus master must provide the appropriate logic to take care of this. The
last issue of the Nasbus specification called for a 10uS reset pulse. This has now
been extended to 530uS as chips in the 179X family require a 50us pulse. Deap
investigation of the matter has vet to yield a 179X chip that can tell the difference
between a 10uS pulse and a 50uS pulse. N2 owners who are concerned by this should
substitute a 10nF capacitor for Cl (1nF). Supermum owners need not worry as this has
been taken care of.

Line 15, /HALT.
Z80 halt signal. Up to this point in time nobody has used it, but it is there.

Lines 16 17 18, /BAI /BAO /BUSRQ.

/BAT and /BAO are the DMA daisy chain. If an expansion card wishes to take
control of the bus (an expansion card is any bus card which is not a bus master) it
asserts /BUSRQ; the bus master will respond by taking /BAO low. The mother board
connects line 17 to 16 between each slot, ie line 17 of the bus master will go to 16
of the adjacent card, line 16 at the bus master is not used although it can be a test
point. Between all subsequent cards line 17 goes to line 16 (for full connection
details see the section on daisy chains). Cards that do not use the DMA facilities
should connect 17 to 16. /BAO will be fed into the /BAI of any potential DMAing
device, and the /BAO of the same device will go into the /BAI of the next and so on.
If a potential DMAing device has not asserted the /BUSRQ line it will pass on the
signal. When the signal reaches the device which originally asserted the /BUSRQ line
it will hold /BAO high, at this point it will have taken econtol of the bus. The
highest priority device is that nearest the bus master.(CPU card).

Lines 19 20, TIEI IEO.

Interrupt daisy chain for vectored interrupts. The IEI input of the highest
priority device is held high, the IEO ocutput of that device goes to the IEI input of
the device with the second highest priority, the daisy chain is continued until the
device with lowest priority is reached, its IE0 is not connected. It is recommended
that line 20 of the bus master is linked to line 19 of the adjacent card and so on
down the bus. As the interrupt daisy chain does not involve the Z80 it is possible to
move the bus master from slot to slot and vary the level of interrupt priority of the
devices on the bus master. The DMA daisy chain however does involve the Z80, -and the
bus master must always be to one side of the expansion cards which may generate a
/BUSRQ. If the motherboard is linked in the recommended manner the device with highest
interrupt priority 1is nearest to the bus master. If the daisy chain is connected the
other way arround a problem could arise as the Z80-DMA can also gemerate interrupts.
For further details on connections see the section on daisy chains.

Line 21, /NMI.
A short pulse will be generated on this line by the bus master from a low on

line 6 (/NMI SW). On Nascom 1l the NMI 1is used in the single step feature and is not
available.

-20-

Line 22, /INT.
Used for the 780 maskable interrupt. For full details see the book "Z80 family
program interrupt structure' available from Zilog.

Line 23, /WAIT.
Used to insert wait states into Z80 machine cycles. Expansion cards that

require walt states should provide them.

Line 24, /RFSH.

Used to control the refreshing of dynamic RAM. It should be noted that a
refresh cycle 1s a memory cycle and designers should take appropriate steps. The I
register contents will appear as the top eight bits on the address bus during a
refresh cycle.

Line 25, /Ml.
7Z80 /Ml used to indicate an opcode fetch, also used (in conjunction with
/IORQ) to indicate an interrupt acknowledge cycle.

Line 26, /IORQ. ,

Used to indicate a Z80 I/0 cycle. The port address will be on the bottom eight
address lines (A0 to A7). The top eight will have the contents of the A register on
them. If /IORQ 1is asserted with /Ml it indicates an interrupt acknowledge c¢ycle and
the Z80 will expect to recelve an interrupt vector.

Line 27, /MREQ.
Used to indicate a Z80 memory cycle.

Line 28, /WR.
Used to 1indicate a Z80 write cycle, asserted in conjunction with /IORQ or
JMREQ.

Line 29, /RD.
Used to indicate a 780 read cycle, asserted in conjunction with /IORQ or
/MREQ. It should be noted that /RD is not asserted during an interrupt acknowledge.

Lines 30 to 45, A0 to AlS.
Z80 address lines, should be tristated during a /BUSAK.

Lines 46,47,48, Al6, Al7, AlS.
Optional implementation for extended addressing, should be tristated during a
/BUSAK.

Line 49, GND.
An additional ground line to reduce system noise. Must be implemented on both
the mother board and on expansion boards.

Lines 50 to 37, DO to D7.
Z80 data lines, should be tristated during /BUSAK.

Line 58, RSFU.
This line is reserved for allocation at a later date. Please do not use.

T.ines 59 60 61 62, INT 0 1 2 3.

Interrupt request lines, used to generate interrupt vectors from devices that
are not capable of generating their own interrupts. These lines would be monitored by
an iInterrupt controller which would be capable of generating interrupt vectors, the
controller must be capable of being programed with the sense of a particular line
(i.e. whether 1its active high or active 1low) and the vector. A device unable to

~30-

generate a vector would assert one of these lines when it required to interrupt,
expansion cards availing themselves of this facility should provide it via links so
that the particular line can be selected by the user.

Line 63, /PWRF.
Powerfail warning. This line is to be taken low 100mS before the power rails

drop by more than 5% and held low until 100mS after the power on reset. For wuse by
backup memory etc. Optional signal which would be provided by the power supply
circuitry if implemented.

Line 64, AUX PWR.
An auxilary +5 volt supply for the use of backup devices. Absolute maximum
current when the main power supplies are off is 100mA. Implementation is optional.

Lines 65 66, NDEF1 NDEF2.
Not to be defined. These are lines for users to allocate as they require,
there are only two restrictions and one provision.

a)TTL levels only, ie no voltage greater tham 5 volts and no voltage less than 0
volts.

b) No transition until 100nS after the previous transistion, ie don‘t put a 16MHz
clock on this line.

¢) A link must be provided to disable the use of NDEF 1,2.
Line 67, GND.
An additional ground line to separate the power lines from the rest of the
bus.
Lines 68,69, -5 volt supply.
Lines 70,71, ~-12 wvolt supply.
Line 72, Keyway

Lines 73,74, +12 volt supply.

Lines 75,76,77,78, +5 volt supply.

Daisy chains

/BAT 16 ————————— X- 16 ————eee¥~ 16
I 1
/BAD 17 —Xem—m————- 17 wXemmneeeam 17
IET 19 ~=rrmm e X- 19 ~—memmmee X- 19
I I
IE0 20 =X=—o—o— 20 -X———mmmmm 20
SLOT 2 SLOT 1 SLOT O
Expansion cards Bus Master

X = Cut of bus track
I = Link between tracks

-31-

BASIC ROUTINES

We’ve had several goes at persuading various people to tear the Nascom &K
BASIC apart, because it must be just ‘chock full” of useful routines. Up to date, we
haven’t had much success, either those we approached were too busy, or something. So
were we surprised when we were sent the following by one of those ‘precocious brats’
who has taken the BASIC to pieces in odd moments whilst studying for his ‘O-levels”.
Makes yer sick don’t 1t?

Anyway, young Steve hasn’t told the whole story, he hasn’t filled in the
details of what the registers have to contain when the routines are called. He's
promised that as part 2 for the next issue. So for those of you who wish to figure out
the remainder of what could be a very powerful machine code floating point maths
package, here are the calls.

Bits of BASIC . . .Routines and all that. by Steve Hansellman

Nascom BASIC contains a number of useful routines (if you know where to find
them). S0 feeling masochistic, I decided to find the more useful ones.

Function Address Function Address
SGN F822 INT F8E6H
ABS F838 USR 1003
FRE FODO INP F441
POS FOFE SQR FAAC
RKD FB8R LOG F6C7
EXP FAFA CcO0s FCOO0
SIN FC06 TAN FC67
ATN FC7C PEEK F3A3
DEEK FDBC POINT 1051
LEN(F382 STRS F19A
VAL F41C ASC F391
CHRS F3A2 LEFTS F3B2
RIGHTS F3E2 MIDS F3EC
NEW E4R9 LIST E6DD
FOR E779 RESTORE E846
STOP E870 END E872
CONT E89E NULL E8B1
CLEAR E9CA RUN EALD
GOSUB FALC GOTO EA2D
RETURN EA4B DATA EATO
REM EA72 LET EA87
ON EAEL IF EAFF
PRINT EB23 INPUT EBFD
READ EC2C NEXT ECF6
DIM EF28 ouT F450
WAIT F453 CSAVE F4C3
CLOAD F4F9 POKE F5AA
CLS FD8B WIDTH FDAS
LINES FDAD DOKE FDC7
SCREEN FDE6

Other useful routines:

Print character in A —_— E69B

Input a linec — BGO7

OQutput “?° then get line -—- E4FC

-32-

Routine to get mext non space
character.C flag set if wvalid

ASCII diglt - E836
Print HL in decimal - FOAD
Amount of memory stored @ 10DA
Ctrl 0’ flag stored @ 1045
End of program stored @ 10D6
Start of text starts @ 10F9
Nulls stored @ 1041
Line length stored @ 1042
Location of text stored @ 1049
Line buffer starts @ 1048

While 1 was disassembling the BASIC I found a number of things that aren’t
mentioned in the manual such as ctrl *0°. "What 1s ctrl *0°?", I hear vyou ask., Tt
suppresses output (long word “suppresses’). Can T hear shouts of, "Useless!'? Well its
not, because a flag is stored in the workspace. Poke the flag and you suppress output,
useful for passwords and the 1like. Mind you this only works while the BASIC has
control of the input buffer. This occurs when the input is in the NAS-SYS or NASBUG X0
mode, or during an INPUT statement.

Ever noticed how slow BASIC is on starting up? Take a look at locations FCCDH
through to FCD4H these locations form a routine which is simply a delay. At this point
I will grit my teeth and hope that I°m right and that it is all it does.

Ever wondered why you can’t single step BASIC? It“s because it changes the NMI
jump vector 1in the workspace. If you want to single step BASIC ignore any calls to
FEBBH because that’s where it changes. 0Ok so it changes the NMI jump so what does it
change it to? It changes it to the break function, so if you can generate an NMI you
can use it as a break key. How do I generate an NMI ? Simple conmect a push to make
switch between pin 4 of the keyboard and ground. (Nascom 2 only. Ed.)

Hope that this helps vyou, Steven Hanselman
Nutty Nascom Owner.

HOMILIES (- are they legal !7)

Two little homilies (I“ve just looked that up in the dictionary, it said,
"Tedious moralizing discourse.”, I didn’t know how close my choice of words was). Both
of these concern the design and/or testing of new equipment, and both are printed here
for those just on the point of desparation.

The first came from wmy father, who spent a lot of my early childhood
constructing television sets out of war surplus radar sets. As I remember, they had
long persistence green sc¢reens. When L first cut my teeth on a soldering iron (and
that hurt), he told me, "It will always take so long to build a thing, and then at
least five times as long to make it work.". That one has always stood me in good stead
when doubtful homebrew circuits didn"t do as expected. I must admit it’s preserved my
sanity, if only in a perverse desire to prove my old man wrong.

The origin of the second is more obsure, I may have even invented it myself. T
certainly use it in the shop when customers present themselves with a handful of dud
chips. It goes as follows. "One dud is too bad, change it, the second is coincdence,
three is ‘Hmmmm”, and four or more, is ‘you’ve done something wrong mate”." This one
proved it’s worth only yesterday, when a customer came in with no less than eight
*dud’ CD4026s. Now eighti Is stretching even my credulliey a LIc far, sov after applying
the above rule, it turned out that he’d forgotten to connect the power rails to any of
the chips. QED.

-33-

Dr.D’s Diary

Episode the Ninth. (Can’t think of a better mame for it, unfortunately, so that will
have to do.)

Big decision time

As I probably neglected to mention, I recently added a Cottis-Blandford
cassette interface to Marvin (for the benefit of new readers, this means "my Nascom
1"Y. With great care, I designed a method whereby both the old and the new tape
systems could be used "at the touch of a button" (1 point for that omel) Tt dida’t
work. Only the new system would work.

Situations such as these separate the good tapes from the bad. Suddenly,
instead of having to sit and convert the tapes to the new system, I was faced with the
horror of having to re-type anything that I wanted to use in the future. These are the
moments, Nasfans, when deep thought has to come into play. (I mean, am 1 going to be
prosecuted by the Receiver for using the expression "Nasfans"?) Think long and hard
about the priority you would give to Star Trek (I chose it) or some boring simulation
of the British economy, converted from a program for the TR880, pinched from Personal
Computer World (who once took six months to fail to decide whether or not to print an
extremely dull article of mine), and you will probably reach the same conclusions
about what constitutes a worthwhile program as I did. The first thing to go in was my
assembler. This was closely followed by the amazing graphics utility I use with Nascom
BASIC, in order to get it to do fast graphics. (That is enough of the advertising,
thanks - Ed) (That was not me - Real Ed.) Then Star Trek, of course. Bur, after those
had gone in, and T had reached new levels of typing skill and boredom, there came a
process of decision. And I can hounestly say that I don’t really miss the programs that
are lost. Not at all. Well, actually, I miss Lollipop Lady, the most truly original
computer game I have seen yet...

Ongoing hardware situation.

Yet another board has been added to the fabulous Marvin’s motherboard. This
time, it is a Winchester Technology WT910 sound board. (Actually, this is only one of
the two boards I have added, of which more in a moment or two.)

The board has been widely advertised, so you don’t need me to tell you too
much about what 1t can do, de you? Oh, all right then, hut only because T°m paid by
the page. (This is an outright lie - Ed.) The board appears to the processor to be
sixteen memory locations that you can only write to. One of the reasons you can’t read
them is that, presumably to aveid interfering with other RAM locations, they are at
the same part of the memory map as the monitor. It is possible to "move" the board to
the top of the memory map if you happen to have a disc based system, by changing one
integrated circuit. This just happens to be a cheap one, which is not the usual thing,
in circumstances such as these!

These sixteen '"memory locations" are the control registers of an AY-3-8910
chip, which is pretty well the Rolls Royce {(or, to put it ancther way, the Nascom) of
the “sound synthesiser on a chip'" world. It has three separate tone generators, each
of which can be independantly controlled as regards volume, frequency, presence or
absence of white wnoise. Automatic envelope shaping of the output is available, and
this can provide fascinating rhythmic effects. At least, I find them fascinatiag!
Several optional enhancements are available: sound modulator to make the sound come
out of your TV, digital to analogue converter (so you can design wave shapes of your
own, all you machine code addicts) and an amazing dedicated (well, it seems
enthusiastic, at the very least!) microprocessor. The latter has been mask programmed
with the first few notes of several well known tunes, and is the kind of gimmick I
find quite hard to resist. In fact, I didn't resist, so that every time I switch
Marvin on, he produces an impression of Westminster chimes that makes the dog think
there is someone at the door.

The nauality nf the hnard ia auperh, the documentation tells veou all vou need
to know, and the price is probably reasonable, if you are not the sort of person who
enjoys hand carving his/her own circuilt boards from the virgin copper laminate. But,
if you are that sort of person, then read on......

—34-

Information for masochists.

I also bought a WT100. That is a prototyping board, as i1f you knew not! On it,
I have constructed a stereophonic sound system, which has two AY-3-8910 chips, output
to my hi-fi and will soon have two digital to analogue converters, plus anything else
in the sound synthesis line that I can get to work with the system. The circuit, while
it dis not copied from the Winchester one, 1s rather similar, except for the
addressing. The output from the Winchester board is mixed into both channels of my
board, thus appearing in the centre of the stereo "stage'. Anyone who is contemplating
building a circuit at all "similar" to the WT910 (and you certainly mustn’t copy it,
or you will be guilty of some sort of crime thingy) will want to know that the circuit
in the documentation, while it is the truth, is not the whole truth. Far be it from me
to tell you that pins 3 and 4 of IC5 must be connected to the 0 volt line. If T told
you that, you would be able to build the board from the information its makers are
willing to sell you, and that would never do.....

I have written one or two 'music" generating programs, of a fairly trivial
kind in BASIC; when I have written something I can feel proud of, it will be sent in
for the program library. (See also the '"Whatever happened to..." section for my
libellous remarks about the latter.)

Not a book review, really.

I have recently read all of (and even understood quite a lot of) Douglas
Hofstadter’s book, 'Godel, Escher, Bach: an Eternal Golden Braid". I would tell you
more about it, were it not for the fact that Malcodm Peltu has already reviewed it in
Personal Computer World, and he writes a pretty nifty review. (Tt is interesting,
however, to note the element of recursion involved in that last sentence - a review of
a review - since a major theme in the book is recursion.) If T say buy 1it, and you
don“t 1like it, you will be upset, because it is expensive: I consider the money well
spent, though. If you are interested in the great question of Life, the Universe and
Everything, which is to say, "is it possible to write a program that is intelligent?"
then I can assure you that this book has enabled me to think a great deal more clearly
about such things. You will have realised that I dare not reveal the secrets the book
holds. Besides, it is not as easy to summarise as PzouSt....

A book review, really.

Another recent purchase (notice the restatement of this major theme in the
great computer hobby) is "The CP/M Handbook" by Rodney Zaks. I bought this because I
hope one day to have enough money to buy a disk drive or two, and have read reviews
that suggest CP/M is not too well explained by its manuals.

Rodney Zaks is even more well known than myself, on account of his far greater
output; mind you, he started first, and I don’t think he uses Naspen, so it may be
that T will eventually be able to catch up, or even overtake him, who can tell? (Good
plug - Ed.) This is the first book of his I have read, and certainly makes using CP/M
sound considerably less intimidating than it did previously. In fact, the man makes it
all sound suspiciously easy. The people who make a lot of money out of computing are
those who have convinced their employers that they are doing something very difficult.
Could it be that the mystique surrounding disk operating systems 1is just a paper
tiger? (This is not an advertisement for a printer.) Let us hope s0.....

A voice crying in the wildezness.

Would someone who knows how to connect a Nascom to a Frieden Flexowriter
please contact me. For those who have never seen this product of the Dutch(?) branch
of Singer, it is a sort of teletype, which can also be used to hammer steel plate into

much thinner steel plate. The noise of the thing when running is beyond the power of
my descriptive talents to describe. It gets even louder if the punch is switched on,

and T worry whether the foundations of the house will put up with it for long, if T do
manage to interface the thing.

~35-

The M"Let’s write an Interpreter" section.

All microcomputer users should, at some stage in thelr programming experience,
try to design a programming language, and then implement it on their system. This is a
very good programming excercise, and will also, it is to be hoped, teach them not to
moan quite so much about the shortcomings of the work of others.

The first step, 1In all cases, is to specify what the language is. Pilot is
used for writing conversational programs, used in education. A considerable amount of
information about using Pilot can be found in a series in Computer Age; just as well,
really, as I have no expertise in the field of educational methods. A program in Pilot
consists of a series of lines. Each line consists of a label, or an instruction, or
both. An instruction cousists of the followlng parts:

1/ A valid Pilot op-code, consisting of one or two capital letters.

2/ An optional condition code, the pessible forms these can take will be described
later. If the condition is not met, then the line will not be executed.

3/ A separator, consisting of a colon followed by a space.

4/ The “text field", the contents of which vary, depending on the op-~code type.

It is, of course, possible to state all the above with far greater precision
by wusing the "Backus-Naur Form" of syntax definition. The actual op-codes can also
best be defined in this way. BNF is splendad, but takes pages and pages, SO We won't
use it.

Some versilons of Pilot get round the problems caused by the lack of 1line
pumbers in the language by adding pseudo-line-numbers. Of course, this is a gshameful
cop out, and we will have none of it. This will mean that the editor will not be as
wonderful as the one the Nascom BASIC has. For a really good description of why it is
easier to write an editor if the language has 1line numbers, see P.J.Brown’s book,
"Writing Interactive Compilers and Interpreters” at your library. Or buy it, 1if you
have that much money, and are that interested.

Another thing we are going to do that Brown advises against, is store our
language in the same form that it is written. This will save the effort of writing a
translator, of the Ltype the Nascom BASIC uses to convert reserved words into single
byte tokens. Pilot is particularly suited to this storage format, because it has such
short op-codes. There’s a catch, of course. The section of the program that actually
runs the Pilot program becomes slightly more complex. With other languages, this can
he a major problem......

The op-codes allowed in this version
of Pilot are as follows:

A = Accept input from keyboard.

C = Calculate.

E = End subroutine.

J = Jump to label indicated.

M = Match the contents of the text field with
the contents of the input buffer.

= Precondition, or defined process, instructions. PR, in Common Pilot.
A remark.

Stop.

Type, similar to PRINT in BASIC.

The equivalent of GOSUB.

= Call machine code subroutine. (This 1is

readfully non-standard, but handy.)

<o wnxd
Il

Purely for the sake of simplicity, I have ignored the standard form of Pilot,
which may well result in my system being ignored. Not to worry, I can always claim
that I am really writing about how to write an interpreter! In Brown’s book, ignoring
language standards 1s described as the fourth deadly sin.

-36-

The Command Level.

First, have a look at flow chart number 1, which symbolises the "highest"
level of our interpreter. The box labelled INIT refers to the necessary initialisation
that must be done, as most of you will have realised. Rather than describe the whole
of the command level, I shall procede to code it, before your very eyes! (By the way,
has anyone found a way of passing Zeap files to Naspen?)

The Pilot source code, part 1.

Z80 Assembler : Source Listing

0010 ;DOCTOR DARK’S PILOT SYSTEM
0020 ;DEFINE MEMORY LOCATIONS

8000 0030 ORG 8000H

8000 1000 0040 RAM EQU 1000H

8000 8000 0050 RAMTOP EQU 800O0H

8000 0DOO 0060 SCRAT EQU ODOOH

8000 1000 0070 STACK EQU RAM

0080 ;DEFINE ASCII GODES USED

8000 0000 0090 NUL EQU O

8000 000C 0100 CS EQU OCH

8000 000D 0110 CR EQU ODH

0120 ;DEFINE RESTART NUMBERS
0130 ;*** SYSTEM DEPENDANT #*#%%
8000 0018 0140 SCAL EQU 018H
8000 0030 0150 ROUT EQU 030H
0160 ;DEFINE NAS-~-SYS ROUTINE NAMES
0170 ;*%% SYSTEM DEPENDANT %%#*

8000 0058 0180 MRET EQU 05BH
8000 0063 - 0190 INLIN EQU O063H

0200 ;START OF PROGRAM
8000 0210 ENT

8000 C30380 0220 BEGIN Jp START
8003 3A000D 0230 START LD A (SCRAT)

8006 B7 0240 OR A
8007 2803 0250 JR Z WARM
8009 Cbh6581 0260 CALL INIT
800C CD4280 0270 WARM CALL MESSAG
800F 50696C6F (280 DEFM /Pilot ready:/
74207265
6164793A
8018 ODOO 0290 DEFB CR,NUL
801D CDA380 0300 CALL VINLIN
8020 217A80 0310 LD HI. COMTAB
8023 CD5180 0320 CALL SEARCH
0330 ;IF VALID COMMAND WILL NOT RETURN
8026 CD7381 0340 CALL IMLIN
0350 ;IF VALID IMMED LINE WILL NOT RETURN
8029 CD4280 0360 CALL MESSAG
802C 49206265 0370 DEFM /I beg your pardon?/
6720796F
75722070
6172646F
6EAT
803E 0DOO 0380 DEFE CR,NUL

8040 18CaA 0390 JR WARM

8042
8043
8044
8045
8046
8047
8049
804C
804E
804F
8050
8051
8052
8053
8055
8057
8058
8054
8058
805C
B805E
805F
8060
8062
8063
8064
8066
8067
8069
806A
8068
806C
806D
806E
806F
8070
8072
8073
8074
BO75
8076
8077
8078
8079
807A
807D
807E
8080
8084
8085
8087
8088
808C
B0OBE
8092
0093
8095
8098

F3

E3

7E

23

A7
2805
CDAGSBO
18F6
E3

FB

c9

D5

1A
FE20
2807
BE
2008
23

13
18F4
7E

A7
2810
7E

A7
2803
23
18¥9
23

23

23

71E

D1

A7

C8
18DF
23

5E

23

56

EB

Pl

D1

E9
52554E
00
8381
4CAF4144
00
9681
53415645
00
AEB1
48454C50
00
AABD
4D4FAF
00

0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0930
0960
0970

MESSAG DI
EX
LD
INC
AND
JR
CALL
JR
EX
ET
RET
PUSH
LD
cp
JR
cp
JR
INC
INC
JR
1D

MES1

MES2

SEARCH
SEAL

SEA2

JR
SEA3 LD
JR
INC
JR
INC
IKC
INC
LD
POP
AND
RET
JR
NG
LD
INC
LD
EX
por
POP
JP
DEFM
DEFB
DEFW
DEFM
DEFB
DEFW
DEFM
DEFB
DEFW
DEFM
DEFB
DEFW
DEFM
DEFB

SEA4

SEAS

COMTAB

-37-

(SP) HL
A (HL)
HL

A

Z MES2
VROUT
MES1
(SP) HL

DE

A (DE)

20H

Z SEA2

(HL)

NZ SEA3
HL

DE

SEAL

A (ML)

SEAS
(HL)

SEA4
L
SEA3
HL
HL
HL
A (HL)
DF.

A

z
SEARCH
HI

E (HL)
HL

D (HL)
DE HL
DE

A
Z
A
A
Z
H

DE;WASTE RETURN ADDRESS

(HL)
/RUN/
NUL
RUNS
/LOAD/
NUL
LOADS
/SAVE/
NUL
SAVES
/HELP/
NUL
HELPS
/MON/
NUL

8099
809B
809F
B0AO
B0A2

80A3
80A4
B0AS
BOAG
80A7
80A8
80A9
80AA
80AD

80C5

80DD

BOF5

8105
8106

8114
8115

8123
8124

8132
8133

ABBO

0980

45444954 0990

00
Cc381
00

DF

63

c9

F7

coY

DF

58
CD4280
54686973
20697320
74686520
636F6D6D
616E6420
6C657665
6C206F66
20446F63
746F7220
44617268
27732050
696C6F74
696E7465
72707265
7465722E
20546865
206 36F6D
6D616E6L
73206176
61696C61
626C6520
6172653A
0D
20204C4F
41442020
20205341
5645

0D
20205255
4E202020
20204544
4954

0D
20204D4F
4E202020
20204845
4C50

0D
466F7220
66757274
08037220
68656070
2620706C

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
11600
1110
1120
1130

1140

1150

1160

1170
1180

1190
1200

1210
1220

1230
1240

-38-

DEFW MONS

DEFM /EDIT/

DEFB NUL

DEFW EDITS

DEFB NUL;END OF TABLE

sVECTORED MONITOR CALLS
;%*% SYSTEM DEPENDANT #*%%*
VINLIN RST SCAL

VROUT
MONS

HELPS

DEFR INLIN

RET

RST ROUT

RET

RST SCAL

DEFB MRET

CALYL MESSAG

DEFM /This is the command leve/

DEFM /1 of Doctor Dark’s Pilot/

DEFM /interpreter. The command/

DEFM /s available are:/

DEFB CR
DEFM / LOAD SAVE/

DEFB CR
DEFM / RUN EDIT/
DEFB CR
DEFM / MON HELP/
DEFB CR

DEFM /For further help, please/

814B

8160
8162

8165
8168

816E
816F
8172
8173
8176

8170
817E
8181
8182
8183
8186

8192
8193
8196
8199
819C

81A7
81A8
81AB
81AF
8181

B1BC
818D
81CO
81C3
81Cé6

81CE
81CF
81D2
81D5
81D8

21E8
81EA

65617365
20726566
65722074
BF207468
65206D61
6E75616C
21

0D0oo
C30C80

CD4280
494E4954
3A20

00
CDD581
c9
CD4280
494D ACAH9
4E3A20
00
CDD581
c9

c9
CD4280
52554E2()
4D4FL455
4C4534A20
00
CDD581
C30C80
CD4280
4C4F4144
20554E49
543A20
00
CDhD581
C30C80
CD4280
53415645
20554E49
543A20
00
CDD581
c30c80
CD4280
45444954
4F523A20
00
CDD581
C30C80
CD4280
4E6FT7420
79657420
77726974

74656E21
ODOOD

c9

1250

1260
1270
1280
1290
1300

1310
1320
1330
1340
1350

1360
1370
1380
1390
1400
1410

1420
1430
1440
1450
1451

1452
1453
1460
1470
1471

1472
1473
1480
1490
1491

1492
1493
1500
1510
1520

1530
1540

DEFM

DEFB
JP

-39~

/ refer to the manual!/

CR,NUL
WARM

sALL AFTER THIS IS TEMPORARY

INIT

TMLIN

RUNS

LOADS

SAVES

EDITS

NOTYET

CALL
DEFM

DEFB
CALL
RET

CALL
DEFM

DEFB
CALL
RET
RET
CALL
DEFM

DEFB
CALL
JP

CALL
DEFM

DEFB
CALL
JP

CALL
DEFM

DEFB
CALL
JP

CALL
DEFM

DEFB
CALL
JP

CALL
DEFM

DEFB

- RET

MESSAG
JINIT: /

NUL
NOTYET

MESSAG
JIMLIN: /

NUL
NOTYET

MESSAG
/RUN MODULE: /

NUL
NOTYET

WARM

MESSAG

/LOAD UNIT: /

NUL
NOTYET

WARM

MESSAG

/SAVE UNIT: /

NUL
NOTYET
WARM
MESSAG
/EDITOR: /

NUL

NOTYET

WARM

MESSAG

/Not yet written!/

CR,NUL

-40-

There endeth part one, and those of you with no charity in your souls are
right, the rest is yet to be written. The design of the editor, and then the tape

routines, are my next task.

CP\LOT‘)

INT

EXECUTE
THE
COMMAND

YES llRuNn
THE
LiNE.

PiLor FLow Cuhaer H1

-41-

1.5 Mbaud

How to load programs at 1l.5Mbaud David Parkinson

(or the Gemini EPROM beoard and paging)

Some time ago I took the route to disks, and after a while I had CP/M 2.2 up and
running on two 8" drives. With the reducing costs of dynamic RAM my system memory had
grown to 64K ~ gpread over two RAM-B boards. (The main processor board is a Nascom 2
by the way). My disk software resided from FO00-F7FF with the screen at F800~FBFF. I
did not want to commit the area FOOO-FJFF to EPROM as it sometimes was required for
other software that 1 was developing. The net result was that T had a variety of tapes
that I wused to load, depending on what I wanted to do at the time. The procedure for
starting CP/M on first switching on was:-

Ensure Power-on-jump switches set for 0.

Ensure Nas-Sys switched in and screen at 800.

Switch on.

T.oad Cassette tape 82400 baud to FO00~-F7FF (Disk & I/0 routines).
Enter short machine code program { 00 76).

Execute 1t.

Throw switch which dropped Nas-Sys out and moved the sereen from
800~BFF to F800-FBFF. (RAM appeared at 0 as it was no longer
overlaid, and the screen now overlaid RAM at the other end of memory).
Alter the power—-on-jump to FQ0O0.

Press Reset.

Bingo CP/M going!

Once in CP/M life wasn’t so difficult. New versions of the Disk & I/0 software could
be loaded over the existing ones and tried immediately, and only in catastrophic cases
would the whole start up procedure have to be repeated. Having the routines sitting
there in RAM meant that they could be patched easily, or totally changed, and 1 had no
worries about slow EPROMs and whether I should have the Wait state generator switched
on. However it was too much of a rigmarole and there must be a better way! Putting
everything in EPROM in the sockets on the Nascom 2 would not help as EPROM gobbles up
areas of the memory map and you have programs sitting there that you don‘t want to
use. (If you"re running Basic you have no interest in Zeap or Nas-Dis have you?). T
also have the odd CP/M program that will not run in systems under 56K! Also
occasionally there are various system programs that have conflicting execution
addresses. This would all have lead to a horrific switching arrangement if T had
attempted to use the sockets on the N2.

I could see only one reascnable way out of the problem, and so gave in to the
high-pressure salesmanship that I had recently been subjected to from Interface over
the Gemini EPROM board. (Mind you I think they’d given me up by then as the first
indications I gave that I was about to conceed weren’t followed up!).

The reason for choosing the Gemini board is because it supports the page-mode scheme.
This effectively allows you to switch the board on or off by setting or resetting
certain bits of port FF. When the board is switched off it vanishes £from the memory
map, leaving the full 64K of RAM free for the wanted system. (Not strictly true as the
screen is still cluttering things up at FBOO-FCO0)}. RAM-A owners can carry on reading
as for the application I had in mind the RAM was specifically required NOT to respond
to the page-mode switching, as it was necessary that the RAM be present along with the
EPROM board. The two can coexist, as, when the EPROM board appears, it asserts its
"RAM DISABLE" line and so overlays any RAM that might lie in its address space.

[Note that any RAM on the Nascom 2 cannot be overlayed. The RAMDIS signal only emerges
from the N2, and is not connected back in].

~49-

The Gemini EPROM Board

The Gemini EPROM board is a standard 8'x8"
gilk-gcreen, solder resist, and with plated through holes. It
addressing logic/buffering for the Nasbus and has 16 empty
accommodate the EPROMs and one additional socket which will accept
Rom.

wailt states when the EPROM board is being addressed,

Nasbus (compatible! -Ed) card, with

holds the usual
24=-pin sockets to
the Nascom Basic

There is also an on-board wait state gemerator that can be switched in or out as
required. This has an advantage over the one on the Nascom 2 in that it
and not

only 1inserts
in every cycle

irrespective of whether RAM or EPROM is being accessed. As with the Nascom 2 the wait

state occurs in both M1 and MREQ cycles.
notice that the critiecal cyecle from the point of view
cycle, other Read/Write
the Board alsoc supports the Nascom Page Mode of working.

of memory

(If you check your ZBO data sheets you will
access
cycles are 1/2 a clock period longer). As mentioned earlier

is the Ml

The EPROM sockets
decoded to a 4K
used to configure
selection being

simultaneously on
similar to that
on a header plug.

Before starting assembly of the card T plugged it into my system which
This
save time later when there are a lot more faults that could be about. This

work happily.
reveal any major
(Only once have T

was a

seemed no end to

are subdived into four banks of four sockets each. Each bank can be

boundary, and each bank has a strap field associated with it that is
the bank’s sockets for either 2708s or 2716s. (The 2708/2716
on a bank basis means that the two types may be accommodated

the board, but obviously only in separate banks). The 4K decoding is
of the RAM cards, the wanted address being selected by a wired strap
(None of the *Which bank is which?’ of the Nascom 2).

continued to
a procedure I would recommend that everyone follows - it can
test will
faults on the board in those lines that are connected to the Nasbus.
had a board that stopped everthing. In that case I found the fault

is

tiny whisker of copper across pins 1-6 of the edge connector - the board just
hadn”t been trimmed properly). The board took a

little while to assewmble - there
those 24=-pin sockets! Once again the board was plugged in, this time

to catch any possible solder splashes. With everything Ok at this point it was time to

add the ics.

All the components were there in the kit, the only error being that
supplied 1Instead of the ‘LS8’ ones specified, but luckily they were
I had some of the LS ones to hand. (Perhaps someone somewhere needs
only other problem I had with the assembly was that the supplied
refused to go into 1its 24-pin socket. After a great deal of careful
swearing) it partially conceded and now sits about 2/3rd of the way

With the TTL ics in and the board plugged into the bus everything still worked, so

was time to add some EPROMs. I set the strap fields for 2716s,the
8000 on Bank 0, inserted some 27163 and plugged the
everything worked! However I

board back in.
subsequently discovered one small point that does not
appear in the manual. If a 2716 bank 1s decoded as a 4K block and the 4K block is

two ‘5’ 1cs were
common devices and
new glasses?) The
24-pin header plug
effort (and loud
into its socket.

it
decode address for
Lo and behold

an

even one (0,2,4,6,8,A,C,E) then the 2716s must be placed in positions X0 and Xi, if it

is odd then they must go in X2 and X3. From this it follows that if

a 2716 bank 1s

decoded as two non-contiguous 4K blocks, then one must be odd and one must be even.

To sum up. The Gemini EPROM board is a well produced board that does the

designed to do without

system.

any apparent

job it was

vices, and has been a welcome addition to my

-43-

Back to the main topic

To return to the main topic of the article - we now have a working EPROM board, what
do we do with it? First of all all programs that we wish to have "on-call™ have to bhe
programmed into EPROM and located on the board. The addresses at which they are placed
are purely arbitary, and bear no relation to their execution addresses. (I picked 8000
upwards). The only constraints are that they must not overlay any area of memory that
is used by the Nascom on-board memory, (as it does not respond to RAMDIS), or overlay
RAM that will be used for the Z80°s stack while the board is active. Next, two short
control programs have to be written for the board, one to deal with power-up, the
other to make 1t easy to use. The remaining things to do before inserting 1t is to
select it to respond to page 1 - the power-on page - and to set the system’s
power-on~jump address to that of our control program on the EPROM board.

As T intended to work mainly in a disk enviromment but did not want to burn my bridges
behind me, I left the Nas-Sys 3 EPROM on the N2 board and made a modified copy of it.
This version supported screen and workspace at FB800-FFFF, and included a small
addition (I reduced the slign-on message to accommodate 1it) which we shall see in a
moment. By throwing one switch I could still return to a standard Nascom set-up should
the occasion arise.

The power-on {or Reset) program is shown below together with parts of the other
control program. The purpose of the power-on section is to copy the modified Nas-Sys
to RAM at 0, and then to jump to it paging out the EPROM board on the way.(*** Note
that we must be off the board before it’s paged out otherwise our program will
suddenly vanish as the OUT instruction is executed! **¥).

8000 C3 8003 RESET: JP 8003H ;Get PC loaded
8003 01 0800 LD BC,800H ;2K length
8006 11 0000 LD DE, D ;To here
8009 21 8800 LD HL, 88001 ;Nas-Sys ROM site
800C ED BO LDIR ;Move it down
800E 21 0000 LD HL,O ;Set start addr
8011 D9 GO: EXX ;1Save address
8012 01 0006 LD BC,6 ;A blt more to move
8015 11 0800 LD DE,800H ;To here
8018 21 8021 LD HL,PON :This code
8018 ED BO LDIR ;Move it
801D D9 EXX ;Reset addr.
801E €3 0800 Jp 800" ;Go to it via RAM
: This section pages the EPROM board out and
; starts Nas-5ys.
: (Copied & executed in RAM)
3021 3E 22 PON: Lb A,224 ;Any page except 1
8023 N3 FF oUT (OFFH) , A ;Page board out
8025 E9 JP (HL) ;Off to it
T e T L L
; This section offers the *
; multiple choice *
s dkdokkddkkhhkkkiiokkkhhkhhhhkkkhik
8100 31 1000 OFFER: LD SP,1000H ;Use Nas-Sys user stack
8103 EF RST PRS
2104 0C 57 68 61 DEFR €S, What system?”,cr

8108 74 20 73 79

810C 73 74 65 6D
8110 3F 0D

-44 -

8112 38 20 2p 20 DEFB ‘8 - Boot 8" drives’,cr
8176 DF RST SCAL sget reply
8177 7B DEFB BLINK

8178 FE 38 CP 8’

817A CA 8194 JP Z,EIGHT

. - . - . - .

- . - a - . .

; Eight inch drives

8194 01 0800 EIGHT: LD BC, 800H ;2K length

8197 11 FOO00 LD DE,OFC0O0H ;To here

819A 21 9000 LD HL,9000H ;Where EPROM is
819D ED BO LDIR :Move it

819F% 21 FOOQO LD HL,0FCO0H ;Load Jump address
81A2 C3 8011 Jp GO ;Go to it!

The code 1 added to Nas-Sys is shown below. Its purpose is to page the EPROM board
back in and jump to the second control routine. This second routine displays a menu on
the screen of what is available on the EPROM board. Typing the appropriate number or
letter on the keyboard results in the contents of an on-board ROM(s) being copied to
its execution address in RAM, the transfer being done in an identical manner to the
down loading of Nas-Sys shown above. Note that the EPROM board is Read only, and that
any overlaid RAM is not disabled if a write cycle is executed. This means that the
EPROM can be copied to anywhere in RAM, even to the same address as the EPROM!

3 Mas Opn AAAIed Ane
: "D" command altered to arrive here

07F9 3E 01 BOARD: LD A,l ;Select page 1
07FA D3 FF ouT (OFFH),A ; (Turnss EPROM on)
07FC C3 8100 JP OFFER ;Go to Menu program

With this set up it only takes me three key depressions (D <enter> 8) and my 8"
*EPROM’ is loaded (at a rate equivalent to about 1.5Mbaud!) and CP/M boots in in under
a second with no hassle at all! Alternatively D <enter> H for the Henelec disk system,
or D <Enter> D for Debug & Nas-Dis, OTeeceess.

Using this technique you can also hold RAM based routines that you frequently use that
will not run in EPROM, or small utilities that you use frequently (but not together)
can all execute at the same address... It“s up to you what you do. If 32K 1is not
enough you can always buy another EPROM board for page 2...... {(Anyone seen what’s on
page 37 - ED).

DODQ OF THE WEEK

W, .. 1 also found the 9 column listing offputting when trying to check

through for errors in entry as, of course, my Nascom tabs in eight columns."
Name and addrcee withheld ta proteet the guilty. (Hint - read the back

issues!!)

—-45—

280 Guide

THE KIDDIES GUIDE TO Z80 ASSEMBLER PROGRAMMING D. R. Hunt

oo NEEEEESRRE R EE 1 Pt]

Part: The Fourth. Learning to live with a computer
(whilst avoiding grounds for divorce)

INMC80-3 has just plumped through the letter box. Yes, I dec have one sent
through the post just like any other member; that way I can check on how long it takes
from going to the printers to arriving on the members’ doorsteps. Heavens, I haven’t
continued the saga, and Paul will be nagging me for copy for the next issue any
minute. So here goes.

After reading the previous episode to remind myself of the story so far, I
must at this stage give a very severe warning to those married members who haven’t yet
been made aware of the light.

Women (and here I'm presuming that I am writing for a predominately male
readership), are strange beings. In general, wives (and girl-friends) will, under
normal ecircumstances, take a considerable amount of abuse without turning a hair. They
provide us with food after a weary days work, they clean the house and do the
shopping. They will tolerate, nay dote upon neisy kids, they will be polite to their
mother-in-law (whilst you hate yours)}. They will accept that us fellas have mates, and
going off for a drink on Thursday nights 1is but the mnatural course of 1life. They
create miracles when important people unexpectedly announce they are coming to dinner
(even the noisey kids are somehow tamed and locked out of sight). In general we fellas
assume this to be the normal domestic role of the women in our lives and is so much
second nature that we are lulled into the security of believing that nothing could
disturb the smooth running of the household.

BUT BE WARNED. Wives and computers go together like peaches and creosote 11!1
The aquiring of a cowmputer produces much the same reaction as bringing home half a
dozen of the most doubtful birds imaginable, and then announcing that hence forth
these are going to receive your undivided attention until at least three o’clock each
morning. To say the least, there is some female instinct which instantly eminates
hostility towards your latest possession, and this will seriously affect your wallet.
I fully endorse the comments by Len Ford (Issue 3 page 39), and feel that his is a
masterly understatement of the facts. Wives, who for years have consented to being
taken out to dinner annually on the wedding anniversary (if you happen to remember)
now assume 1t as a right that they will be treated to a regal nosh-up at least once a
month. The occasional Mars bar will now have to become frequent 2 pound boxes of the
sort of stuff that some loony jumps off moving trains, climbs mountains without ropes
with his bare hands, and blows up arab castles to deliver. Nights out with the 1lads
will now take on a sheepish and guilty feeling, which of course that uncanny feminine
*sixth sense” will immediately detect and amplify by such wonesylabic utterings as,
"Hwpff", which of course 1s to be translated as, "If T don’t get taken out to dinner
this weekend, we’ll see how well you survive on cold dinners and dirty shirts for the
next week." So dear naive reader, if you’ve just bought a Nascom, don‘t think the
capital outlay will finish there. There are the consumables (which I mean 1literally)
to consider, and cultivating a sincere friendship with the manager of the lecal French
Bistro should be your next priority.

There are of course exceptions. I know one couple where the reverse 1is true.
*Mrs” plays with the computer whilst hubby sits and knits (or watches Coronation
Street on the box, or something equally constructive). ———=—=== So where were we, we've
looked round the innards of the Z80, got the idea that HEX is only a way of expressing
binary information, learned some of the stupid mistakes that I made after getting mwy
hands on a Nascom and generally not learned much more than could have been gleaned
from any good bLouk aboul Z80 pruogramming in as many days as 1t has taken months to
read this. This time we’ll go on to some of the things that the books seem to assume
you should know. It all easy stuff, but if you’'re not in the know in the first place,
how the heck are you supposed to find out ?

—46-

Shortly after putting our newly aquired Nascom 1 out in the shop, there was
*this ‘ere fella’ who used to wander in, dressed in motor cycle leathers, and spend a
lot of time making the Nascom do things that I had never dreamed possible. And so I
got to know Howard (he used to be on the committee, but resigned about a year ago).
Soon Howard came a regular visitor to the shop, and could be found on a Saturday
explaining the niceties of Z80 machine code programming to customers with far more
informed authority than I. What’s more, he was so dedicated to Nascoms that we didn’t
even have to pay him. It was Howard who first put me on the right lines as far as
programming goes. Up “til then, it had been a case of *figure it out for vyourself”.
Who taught Howard I do not know (perhaps 1°11 ask him before this article is put to
bed), but it was under Howard’s guidance that some of the mysteries of machine code
programming were revealed.

So far T don”t think T have drawn any distinction between machine code
programming and assembler programming. To me they are one and the same. Purists will
argue that machine code 1is the result of assembler programming. The machine code
itself ©being the sequence of HEX codes that is generated by the act of assembler
programming. That sounds like the same thing to me, so there we are. At the time, I
would scribble the machine codes directly on to a plece of paper (Woolies Jumbo A4
work pad for 44p, incredible value) and then type them in to the WNascom. Howard
pointed out that this was bad practice on two counts. Firstly, it was difficult to
remember what more than about half a dozen codes meant, and secondly, 1f I practised
hard T would learn the syntax of the assembler mnenonics and by so doing increase my
vocabulary of instructions because I would be thinking of the descriptive action of
the instruction 1 wanted instead of fumbling to remember the code for the few
instructions T knew. After a while it became second nature to write a mnemounic for the
ingtruction I wanted, and then look up in the book. Low and behold, there it was.
Sometimes T would take this approach too far. Occasionally I would write assembler
nnemonics for instructions that don”t even exist. But in the main, it works. Think of
a way round the problem, write mnemonics to decribe the action to be rtaken, then
translate the mnemonics inte machine codes.

T have already mentioned that there comes a time when the light begins to
dawn. I think I was past that stage, for as I remember, T felt confident enough to
start writing “HANGMAN®. Now that is an important part of learning to program. Simple
games are the very best thing to cut the teeth on, as the rules for the game are
already laid out, and you don’t have to draw up the specification of what it is you
are about to try to achleve. Games like “HANGMAN’ have very simple rules, and these in
turn are very simply broken down into their component parts. So deciding what each
individual part of a program is going to do is relatively simple. Be that as it may,
it was Howard who introduced me to such things as labels, flags and text strings.

So let’s re-examine the asterisks program from part 3. First of all lets lay
down the ground rules of what is to happen. In other words, let’s draw up the
specification.

1} Put an asterisk on the middle of the screen
2) Hang about a bit

3) Replace the asterisk with a blank space

4) Bang about a bit

5) Go back to (1)

We don't need to draw a flow chart of that, it’s too simple. A flow chart in fact
would probably confuse the issue. Now let’s take it stage by stage and write the
mnemonics for it.

LD A,2AH

LD (09E2H)},A

Load A with the code for an asterisk

Put the contents of A at memory location 09E2H, which. just
happens to be on the screen (see last part to see how that
was decided.)

Now notice that I"ve use a semicolon to separate the mnemonic instructions from the
commen:s. In other words, the prograw is already being written in two fields, the
instruction (or mnemonic) field and the comment field. Separating them like this makes
for easy reading and understandability.

wa we we W

-4 -

Also, I’ve used one variable, 2AH (the H denotes HEX, remember), and ome fixed
location, O09E2H. Now the 2AH is easy to remember, but the 09EZH is not so manageable.
Let’s change the 09E2H to a name of our own devising which will be meaningful. This is
known as a label. Now if vyou are going to use a label to denote a variable, or a
location, you should declare it so that you know what it will be. For this we must
introduce a new field into the assembler listing known as the label field, and also
for convention sake use what is known as an assembler directive. In this instance an
equate, abrieviated to ‘EQU". A brief word about assembler directives. These are
instructions in the instruction field which aren’t part of the Z80 instruction set,
but are instructions to you or a nice ‘hairy” piece of machine code known as an
assembler (incidently, the semicolon between the instruction and comment fields is
also an assembler directive). We won’t persue what an assembler is now, but sticking
to conventions is a good idea for later, you’ll see. Another convention used for
assemblers is that label names should not exceed six letters, as assemblers won't look
at labels more than six letters long. Another convention 1s that labels may be
alpha-numeric, but should always start with an alphabetic character. A strange effect
of using labels starting with an alphabetic character is that some assemblers get
confused between labels and addresses starting with an alphabetic character (A to F),
s0 that the address FO80H will be mistaken for a label. Some assemblers won’t accept
any addresses (or data) starting with a letter, so the above address would have to be
written OF080H for the assembler to know what you were on about.

So now our first part of the mnemonic assembly looks like this.
SCREEN EQU 09EZH

LD A,2AH ; Load A with an asterisk
1D (SCREEN),A ;1 Load SCREEN with the contents of A

Lets carry on, we’re going to call the delay subroutine which is further on in
the program at address OD13H, now an address like that is a location, just as the
screen location, and just cries out for a label, and an obvious label name presents
itself. This time we don’t need an “EQU” as the location will be defined by the
position of the routine itself, wviz: just after the main routinme. Another location
defined by its position in the program is the start, so when we come to the *jump back
to the beginning” bit, we can again use a label as well.

SCREEN EQU 09EZH

START LD A,2AH
LD (SCREEN),A

Load A with an asterisk

Load SCREEN with the contents of A
CALL DELAY Hang about a bit

LD A,20H Load A with a space

LD (SCREEN),A ; Load SCREEN with the contents of A
CALL DELAY Hang about a bit

JP START Go back to beginning

e

e we we

wr wr oW

Now at this point the main routine should have become quite understandable in
its own right, even without comments. The labels make the purpose of the routine quite
clear. Notice it also follows the order of the specification quite closely. Mind you,
labels are a two edged toel. You can make the meaning of a program totally obscure by
using obscure label names. I still haven’t figured out how the label name “TBCD3" in
NASBUG and NAS-5YS was arrived at (perhaps I'm just dense). I know what the routine
does because I made it my business to understand what the mnemonics do, but I
challenge anyone to decide the purpose of the label name “TBCD3" without the
accompanying mnemonics. Now let’s finish the whole thing off, and add the delay
subroutine.

—d 8-

DELAY LD HL,0000H
LOOP INC HL

Load HL with 0
Increase by 1

P P I 1)

LD A,L Copy L to A

OR H OR A with L

JP NZ,LO0OP If both not 0 then loop again
RET ; Return from subroutine

One thing is quite clear when writing it out in mnemonic form, and that is T got it
wrong in part 3. The JP NZ is wrong, you look. You see, it“s so easy to make mistakes
when writing code and not using labels. Go on, have a look. Point proven? Well we zll
make mistooks. I would have spotted that had I used labels.

Got all that, good, now as one final convenience, let’s number the lines,
because there’s a fair amount of discussion to follow now, and I'm getting fed up
typing it out each time. From now on 1“1l refer to labels and line numbers.

10 ORG 0DOOH

20 SCREEN EQU 09E2H

30 START LP A,2AH ; Load A with an asterisk

40 LD (SCREEN),A : Load SCREEN with the contents of A
50 CALL DELAY ; Hang about a bit

60 LD A,20H ; Load A with a space

70 LD (SCREEN),A 3 Load SCREEN with the contents of A
80 CALL DELAY : Hang about a bit

90 JP START ; Go back to beginning

100 DELAY LD HL,0000H ; Load HL with O

110 LOOP INC HL : Increase by 1

120 LD A,L ; Copy L to A

130 OR H : OR A with L

140 JP NZ,LOOP ; If both not 0 then loop again

150 RET ; Return from subroutine

First, mnotice line 10, I’ve introduced a new assembler directive, *ORG’. Now
up ti1l1l now, we haven’t supplied any information as to where the program is going to
reside 1in memory. The origin of the program has not been spelled out. In part 3, the
program started at ODOOH, and that”s as good a place as any, so lets declare the
origin of the program, ORG ODOOH. (Notice the ‘0’ in fromt, that”s so the address
doesn’t get confused with the label). Notlice also that I've put an extra carriage
return between the declarations at the front and the main routine, and between the
main routine and the subroutine. (I was going to say I'd split up into ‘byte size’
chunks, but such appalling puns are beneath even my meagre wit.) Anyway, by separating
the program thus, it’s easy to see what each bit is about.

Now to tidy the program up a bit. One one the major omissions 1is the use of
absolute jumps instead of the quicker and simpler relative jumps. Ok, so what is a
relative jump you ask (except those adept at the art of Granny Stomping, and brother,
have you got it wrong)? A relative jump is a jump that does not go to an absolute
location, but is relative to the current contents of the program counter. This is one
of the improvements the Z80 has over the 8080, and 1s very useful. It means that if a
routine is written entirely in relative code (meaning relative jumps are used
throughout), then it’s not tied to any specific location in memory, and therefore can
run anywhere (I know it‘s a glaring simplification, before the know-alls start jumping
up and down, I‘m not writing this for you). Secondly, relative jumps require fewer
bytes than absolutes. Anyway a relative jump 1s easy to understand, the important
thing to remember 1is that it’s relative to the CURRENT contents of the program
counter. Remember, the PC increments by one each time it fetches an op-code or operand
LyLe, oo let us suppose we put a relative jump at memory location 1000H, the code for
this would be, say:

1000 18 05 JR xxxx s Jump to label xxxx

-

-49-

Then when the Z80 encountered this, the PC would be pointing to 1000H. The Z80 would
get the first byte and increment the PC. The Z80 then interprets the first byte
fetched (the op-code), note that the PC is already pointing at 1001H. Having decided
that the instruction 1s a two byte instruction, it would fetch the second byte {the
operand), and increment the PC to 1002 by so doing. At this stage the Z8(} has all the
information it requires, and procedes to add the second byte {the operand of the jump
relative instruction) to the low byte of the CURRENT contents of the PC. Now the PC
had already been incremented by the action of fetching the op-code and the operand,
and is now pointing to 1002H, so 1002H + O5H makes the address in the PC 1007H, ie: 45
relative to the CURRENT PC position, and mnot +5 relative to the start of the
instruction as is commonly assumed. It works exactly the same backwards, except that
the operand supplied is a negative number. The Z80 still adds this to the CURRENT
contents of the PC, and so the PC ends up pointing back, but two bytes short of where
you might expect.

Now, out of pure cowardice, part 1 didn"t contain any information about
*sipned binary arithmetic” (that’s positive and negative numbers to you). T don’t
intend to rectify that omission now, but refer you to any *0 level”’ maths text book.
(Go on, own up to the kids that you don”t know it all, and borrow one of theirs;
either that, or say you want to find out just how ignorant kids are these days, and to
check that the text books contain information on binary arithmetic in this computer
age.) Which ever way you go about it, you will find that signed binary arithmetic is a
bit of a pain, and the designer of NAS-SYS and Nasbug T4, Richard Beal (God bless his
1ittle cotton socks) has included the ‘A’ command to ease this problem. ¥Xow I'm not
going to waste paper explaining it here, go and read the NAS-S5YS or Nasbug manual and
in the light of what I said above, all should become clear. The only thing I will add
is that ©because the operand of a relative jump instruction is restricted to a single
byte, the maximum range can only be FFH (256 decimal). Now because of the offset of
two bytes, this means that the effective range of a relative jump is 80H (equivalent
to 127 decimal steps backwards) to 7FH (equivalent to 129 decimal steps forward). So
don’t get too clever and try jumping all round the memory in relative jumps, “cos it
just won”t work.

Well, all that means is that lines 90 and 140 can become relative jumps, thus
saving two bytes of code.
80 JR START ; Go back to beginning
140 JR NZ,LOO0P ;3 If not both 0 then loop again.

Another thing we can have a go at is the delay routine. Now I wrote that
because at the time I couldn’t think of anything better. (As I admitted in part 3,
what 1 actually wrote was worse, and T'm ashamed to show you exactly what I did.) How
many of you realised that NAS-SYS and Nasbug both contain a very nice delay routine as
part of the keyboard scanning routine, whats more, its location was deliberately
chosen so that users could have ready access to it. Its label ig RDEL, and it starts
at location 0038H. Now the nice thing about that location is that it 1s one of the Z80
*restart” points. To be compatible with the 8080, the Z80 included the eight restart
points from the 8080. Now these are “implied CALL” locations and are a fixed part of
the ZB80 structure. One specific single byte instruction will cause the Z80 to call
that location. So here we have a delay routine (its actual delay time variles from
7.5mS to 2.5mS depending wupon it being NAS-5YS or Nasbug, or wether the Nascom is
running at 2 of 4MHz), accessible by a single byte call. All we have to do is to call

thialt a muwboclr wf Ltiwvey oud thero Lo wvusr deloay -

So now to learn about another very useful Z80 instruction, the ‘DJNZ loop”.
The ‘DJNZ’ instruction is translated as “Decrement, Jump (relative) if Not Zero’, and
what it does 1is decrement the B register, test it, and if it"s not zero, do a relative
jump to the location specified by the operand. If B was zero, then it simply “drops
through’ to the next instruction. To use the DINZ loop we must decide how long the

delay is pgoing to be, and because the delay varies between versions of the monitor and
the Nascom speed, we’ll choose 5mS as a good compromise. Two hundred times 5mS is one

-50-

second, so two hundred times round the delay loop will be appropriate. So let’s draw
up the spec. of the delay routine:

1) Set B counter to 200 (decimal)
2} Delay for 5mS
3} Do the loop until B is 0

Now before we go ahead and use the routine in NAS-SYS, we ought to check that it’s not
going to muck up anything else. So have a look at it. Go on, see if you can figure out
how it works before reading on. Got it, good. It works almost like the counting
routine I wrote originally, except that it counts in the A register, and throws in a
couple of PUSHes and POPs for no better reason than to waste time. The important point
is that the only thing that gets changed is the A register, as, for the routine to
return, the A register has to comtain 0, so, on the return the A register will contain
0. Now that doesn’t matter at all, as the next thing we do with the A register dis to
111 it with the next character to be put on the screen. But watch out, NAS-SYS and
Nasbug usually (but not always) ensure that things are unchanged except where
neccessary, but don”t assume this to always true. CP/M for instance can be relied upon
to change almost everthing in sight when an internal routine is called.

So the delay routine suddenly looks like this:

100 DELAY LD B,0C8H ; Load the loop counter with 200 (decimal)
110 LOOP RST RDEL 3 Call RDEL (delay for 5mS)

120 DJINZ LOOP ; Done 200 loops, mo, go round again

130 RET ;3 Yes, return from delay subroutine

Now there 1is something I’ve (deliberately) forgotten. Yup, you got it, there’s a
location there which I fixed as a label, and I didn’t declare it. I know what it is,
and you should know (because I told you earlier. But, as my junior school English
teacher used to say, "What about the man from the moon, he doesn’t know what you’re on
about because you haven’t told the complete story." Mind you, if there are men in the
moon, they must be very wise, as they had the good sense to stay out of sight when the
Yanks arrived. Anyway, a new line, 15:

15 RDEL EQU 0038H

Now we have shortened the delay routine considerably, introduced the concept of nested
subroutines, and ended up making the program monitor dependent. The first one was a
good idea, short routines are always easier to understand. Nested subroutines are also
a good idea as they lead to simple, easy to understand modules, and although they take
longer to execute, the trade off between speed and simplicity must be in favour of
simplicity for the purposes of this demonstration, after all, the nested subroutine is
an arbitory delay, so speed in accessing it can hardly be important. The 1last point
about making it monitor dependent is very arguable. The program now depends on NAS-~SYS
or Nasbug being present, so it’s dedicated to a Nascom using one or other of the
monitors (I don”t know about NAS-MON, I’ve never tried it). The program is now monitor
dependent, unlike my first attempt, where the only requirement was RAM at the point I
chose for the program to run, and a screen RAM at the point where T put the
characters. On a little example like this, it”s not very relevant, but when you start
using large chunks of the monitor, routines like ‘KBD’ and ‘CRT’ then programs written
will be several hundred bytes shorter, but will be very definitely monitor dependent.

Now for the last part of this lesson. (Thank goodness for the little space
counter on Diskpen, it tells how close to the end I am before I get there.) The HL
register has now been freed by the use of RDEL in the monitor. Now HL is a very useful
register, it 1s the main ‘pointer” register in the Z80, and may be used for ‘pointing
at’ a memory location whilst the byte ‘pointed at’ is manipulated. Lets rewrite the
whole shooting match, wusing HL as a pointer, and not get too thorough about the
explanations, to see how you get on.

-51-

BLINKING ASTERISKS MACRO-80 3.35 Page 1
Title BLINKING ASTERISKS

.Comment \

Author D. R. Hunt
Date 01/05/81
Purpose To blink an asterisk on and off the
screen at a rTate determined by the
contents of the B register. A\
ORG ODOOH
0038 RDEL EQU 00381
09E2 SCREEN EQU 09E2H
0D0o 21 QO9E2 LD HL,SCREEN ; Set HL to point to screen
0D03 36 2A LOOPL: LD (HL),'"#*" ;§ Put an **° at (HL)
0DO05 CD ODOF ~ CALL DELAY
onos 36 20 LD (HL)Y,"™ " ; Put a ‘space” at (HL)
0D0oA CD ODOF CALL DELAY
0DOD 18 F4 JR LOO?1
ODOF 06 C8 DELAY: 1D B,200 ; Prime the delay counter
0D11 FF LOOP2: RST RDEL ; Call the delay in monitor
0D12 10 FD DJINZ LOOP2
0D1l4 c9 RET
END

No Fatal error(s)

Now, I°ve cheated, I don"t intend to repeat the mistake 1 made in part 3, so
I‘ve used an assembler. Now it’s not omne of the ones you can buy for a normal Nascom,
it’s disk based, and has some special features. The only reason 1've used it instead
of my ZEAP, is that my Nascom is all set up for disks, and unlike Mr. Bowden (issue 3
page 27), my Nascom is not multi-mapped, and it”s one hell of a hassle to set it all
up for ordinary NAS-SYS working. So I must explain some of the differences as well as
give a brief run down on assemblers in general.

So, an assembler is a program, it takes the mnemonics you feed it, and turns
them into the appropriate machine codes. Same as looking the codes up in the book, but
faster. Assemblers can be very very fast, (some are just fast), and will beat writing
it all down on your Woolies Jumbo pad any time. They have one major advantage over
doing it by hand, (apart from speed). Lets suppose we wanted to add omne extra line
right in the middle of a program, all the absolute jumps and all the calls after the
insertion would have to be changed, because all the absolute addresses would have been
moved wup by the insertion. In a large program these might run into a hundred or more.
It’s a mind bending chore doing it by hand (although all of us who had WNascoms before
the assemblers came along, managed it). Now, see the advantage of labels for calls and
jumps, you see, until it’s time to actually assemble the program these aren’t absolute
addresses, they are just locations -- well -- er, labeled. Do you see what I am
getting at? Inserting the odd line here and there doesn’t change the label, it = simply
changes its final location at assembly time. Everything is referenced to the labels,
not absolutes, so insertions (or deletions) don"t matter.

-59-

Two more fields have appeared, the ‘address” field and the ‘object” field. The
address field contains the address of the first byte of the instruction. The object
field contains the byte or bytes which make up the particular instruction starting at
the the address given, and for subsequent addresses to the start of the next
instruction

Now to the assembled program itself, I1°ve changed some of the label names. The
main program loop has been called LOOPl, START would have been inappropriate, as the
loop no longer goes back to the beginning of the program. Having called the main loop
LOOPl, then it makes sense to change the label for the delay loop to LOOPZ2.

A ‘quirk’ of this particular assembler is that it requires a colon at the end
cf the label (to tell it where the label ends), except when the label 1is followed by
an assembler directive (EQU or ORG). Some assemblers follow this convention, some
don’t!! This assembler allows an assembler directive called *.Comment’, and this
allows me to write a chunk of descriptive text about the program without having to put
a semicolon at the start of each comment line. Notice that semicolons are still used
to separate the mnemonics from comments though, it’s only provided for convenience.
This assembler likes another assembler directive, an “END’ at the end of the program,
some assemblers will chuck this out as an error.

See that T defined the characters I want to place on the screen as actual
characters enclosed in quotes. Most assemblers will allow this, and it a nice practice
to do this when you actually mean ‘Load A with a character”, as opposed to ‘Load A
with a varlable’. (To the casual glance, LD A,2AH could mean elther). Assemblers will
usually allow decimal numbers to be entered, and they will automatically convert them
to HEX for you. Look where I load the B register in the DELAY subroutine. I put LD
B,200, and the assembler took it as a decimal number because 1 left off the “H'
suffix. Another thing this particular assembler does (and many others don’t) is to
print any two byte operands the “right way round’, this makes for easy reading of the
assembled object code because 1t prints it the way you “think’, but remember, two byte
operaunds are always entered low byte first, so the 1listed code this particular
assembler prints 1is not exactly as it would appear when placed (or automatically
assembled) in memory.

So that’s an assembler. The little counter at the top of the screen is down to
600 odd, so this 1is where it’s got to finish. Tt"s quite likely that there will be
plenty of assembly listings in this issue. See if you can read them, by looking at the
labels. You don’t have to think too hard about what the code is doing (will that be
the next part of this never ending saga, I wonder), but given that the programmer has
thought carefully about the structure of the program and chosen his labels wisely, it
should make some sort of sense. The moral of this part of the story has been, think of
your speclfications, and think carefully about ycur choice of labels. You never know,
vou might not be the only one who will read your programs one day, so why make 1life
difficult for the other fella?

VIDEO

On the following page is a chart showing the complete Nascom video memory map giving
the Hex addresses. This drawing must have taken a great deal of time to prepare and

many thanks to the originator. Unfortunately his name has been mislaid, but we’l1l find
it by the next issue.

€1z iy

gvlzalarisylr 7E 21 171 07|6€BEILE| 9L IGE | 7E|EE |ZELE|0E|62(82(42{92 S22 IEZ|2Z|LZ|0Z|6L[81 |4 QL SL{7LIELIZL[LL|OL| 6 18 {48 |G 7
mn.;.l__.l salgalzaloalsafvalcalzal 1alogidv|av|avioviav| vy v|Lv|aV|SV{7V[EV]ZY] V|0V d6]36j06|06|2 6| v6|66[96}L 6|96/ S6]TBIE6Z6[L606 8138|0838 E8BIVE Si
91 6oloalzi|azlsdlraleclzz]1z]os]39)39]09j05{B9 vaj69{89]45{98]|59]|79{E9(ZI 19]lostds|3sl0s|05j8S)vS| 6GjBGLS| 9G|SS|7YS|ES|ZS|LS Cmuqm._qaquqmqwowﬁ
mP eclec|celac|sel|veteelze] 1| 0Ejd2]|3g|a Zjoziazivi|eZ|8e|LZyal|sZ|rZ|El ZIvzjoZAa oo g L vife B ijiijal|s L7 bEL|Z L _.—Ovu_omomouomDMM 1
.N—. 6 dod|z49dlsaiva[e alz 4l 15]loal4aaa[caloalazjvale3|e3|L F93|s3jrI{ € 3|73} L0 40[30; 00|00 80| vd|6 Q|8 TLT 94} sd quONO__OODu_Um_oDUUomu“M Zl
.:.. csalsalzaloalsalyelca|zal ta{og]aviaviaviov|ev|vv|eviev]Lv[oV{SY|?VIEV|ZV]| LV]{OV]46{36]06|26/86 v6|6 6[o6l. 6|9 6|s 6|7 6|£6{Z6 16{06/d6 |3 810808188 MN‘[—.M
oL 6L]9abL L Q4SS L) TLIEL|T L) L] 0L[49539(Q 9|0 9}HS <©mmmw_ﬁm®wmmqwmwmm_.womn_mmemUmmmd_mmmmmhmmm.mmqmmmmm nmomquqaqoqm_qum ﬁlu.—
-|@ srleclzclacloelveleclze|e|oeldz|3zjaz|oeiazivz|6z|aT{Lz]ogiSZ|7E|L Z|ZZ|L 2|0 4L LA L[HE vi[GE[BLL L SL]TLIELICE ___vaquODDUcmOM% 6
|W| 6 d{g 4]z g d|sd{74|e 4|z 4 14|04 23]33j0 3283 v363 g3/L393{s3[r 3tc 3|z 31 3| 03{ 30| 3| QJoQ|B0O] V0| 6A}8Q] £LA|9C] ST} 70|£ 0|2 A —DomuuuwmuuumuMw g
M‘ calea|zalos|salrslcalza] 1a|oslaviav|av|av|av|vyviev|B Y| LVI9V|SY sv|levizviiv|ov|d6]36{a6|06|A 6| vH|66{96IL6[96/Sb|7B{EG|ZE|L6/06(38 m_mn_mUmmwMOw]
MM»!@ casacilazlsifrieclz s tz]loc]3a]3sjaglaslas|volea|gofsoaolca]79e|Z9t909]3d53S(AG|IG|85|VYSI 65854598 mmqmmmmm_mOmquququqMM 9
.!m._ mmwm_wm.o‘mmmqmmmmmFmOmmNm_NDNUmqu.NmNwmmNmNquNmmmm Lz{oz|41|2Ljat|aLB L YLl L8 LJL3]9L|SH|7LH[ELIZL] L0 uOMOQDUanMMM
|q_. 640 4|24laafsal74[calz sft dfoH433c3fo3(a3|v IYe3|e3[£3(93[53{73{£3Z3}{13|03(30{IA{OC|I0|8GC [vAj6 04BA|LC|90|5Q37G1EQ|Z0T ﬁDODuU. 30|43 UUmuMM 9
Im” sd|egf.alonf sa|valcajza| gjogdviav]aviov|avivvisviav|iv|ov|svjrvlevizv| L v]Ov][d6 (36|06 (06|86 |vE|66 |8646 |96 |G6 |76 €6 |26 |16|06(416(38 082888 M_M £
N 6eleclecloclsc Ioe leclzel vz foela9]aalaalpalas|valsojeclsiafosisa|re |ea|za|ialoala6|a5|as|I5[aGIvG[6G {8546 196 166 |G |ES|ZS|4S0S]|4 7|37 (07 quqwm Z
|w| sclgeicclaclsctoe|celzefefoelazlaziaz]nzlazivzioelsz jez|azise|vz|cz |zzfrz oA L[t |at (Dt [ai|wL| 6L [aL] £459L]SL| 74| ELjZL| 1] OL{ 40|30 DOUOEDM% L
ot R R EE B R A T CHI FEIEE CEI EE CE EE EE CEIVE EE EE EE = HE E BE| EXHELs| Reke pelul X: Kol ioga | E-Xa | -0e] FA 61 - Jol Re=le] iede] pxje) pae] e fofel BN moouu”mom%% 9l
——————
89(27979777|£7|27| 17| 07]6€|8E|ZE|9F [SEIVE|EE[Z €] LEIDE 62 18Z|LZ[9Z|S| 7 ETZ[1Z [0 6L 8L L Q| SY MiEU ZL L OU 68 [L]|9|G|7 |E|T |}

-84 -

Sound & Music

Programmable Sound Generator a review by Kevin Smith

Source: Easicomp Ltd., 57 Parana Court, Sprowston, Norwich, NR7 8BH. COST 43.00 + VAT.

This unit uses the now ubiquitous AY-3-8910 chip, which can make all manner of
weird noises, and comes complete with software on tape to do just that! Also provided
are programs to examine and modify the internal registers of the AY-3-8910, and to
test that 1t is fully functional. For those unfamiliar with this chip, it contains 3
square wave tone generators, a noise generator, mixers and amplitude contrels, an
envelope generator, and two TTL- compatible I1/0 ports, all of which are controlled via
sixteen 8-bit registers. These are accessed via ports 2 and 3.

The unit is supplied built on a 8" x 3" double-sided fibreglass pcb, which
plugs into the Nasbus. Unfortunately, no edge connector socket is supplied, and there
are no dailsy chain connections between lines 16 and 17, 19 and 20.

An onboard amplifier, based on a LM386, powers a 1/4W. speaker, which is more
than adequate, but a 5-pin DIN socket is also provided for output to your hi-fi music
centre.

Several pages of documentation are supplied, consisting mainly of photocopies
of the I.C. manufacturer”s information, which is pretty comprehensive, although most
of the examples given are for a 1-79MHz clock. This encouraged some fruitful
experimentation. No circuit diagram is supplied.

In conclusion, I found the unit easy to wuse, although perhaps over-priced.
Certainly, the addition of socund adds ancther dimension to your programs.

Music Board a review by Tan Hendersom

Source: BBF Engineering, 28 New Road, Melbourmn, Royston, Herts.
Price: 21,65 built and tested including VAT.

The Music Board is a small hoard (5" x 3") built on a single sided fibreglass
PCB. Connection to the Nascom PIO is made via a 14 pin socket in the centre of the
board. Output 1s via a 5 pin DIN socket that can be fed to an audio amp, or through,
for example, a radio/cassette or your hi-fi.

The Music Board 1is basically a tone generator giving 8 octaves of 12 notes. A
variable resistor must be set to tune the master oscillator against a reference such
as a tuning fork - alternatively a scope may be used, Once set the board 1is
simplicity itself to operate. Seven bits of the PIO are used, giving 128 possible
output codes, 00 to 7F. The first nibble selects one of the eight octaves, the
second, one of the twelve notes. The remaining four codes in each sixteen bytes are
*silent”. As the PI0 latches the data written to 1t, any note set will continue until
the PIO contents are changed.

As only one PIO port is used, two cards could be connected to the Nascom. In
this case one of the oscillators is used to drive both cards. The effect of two cards
together should be ‘interesting’.

‘Documentation is thorough, with good descriptions and examples. To sum it up,
effective and economical.

-55-

Add ons

This is the first 1in a series of articles where we will be asking
manufacturers of Nascom compatible "goodies" to outline their product range. In this
issue we have details from Gemini Microcomputers Ltd.

Gemini is a very young company, started only some 7 or 8 months ago and yet
they already have a very comprehensive range of products available, with several more
exciting items about to be introduced. MD of Gemini is John Marshall, founder and
ex-MD of Nascom, and Technical Manager is Paul Greenhalgh, an ex-Nascom Engineer.
Perhaps this explains the company’s strong interest and capability in producing Nascom
compatible product!

GEMINI MICROCOMPUTERS

With an increasing range of firmware becoming available for the Nascom, users
were rapidly running out of EPROM sockets and Nascom 1 owners were eager to find an
easy way to add the BASIC ROM to their systems without recourse to surgery, so0 an
EPROM/ROM board seemed an obvious omission from the Nascom product range that had to
be put right!

The Gemini G803 EPROM/ROM board has 4 banks of 4 sockets for EPROMS. Each bank
can take either multi-rail 2708s (1K x 8) or single rail 2716 (2K x 8) EPROMS,
although each bank must contain only one type. Flexible decoding allows each bank to
be located on any 4K address boundary. There is also a further 24 pin socket to take

"the MK36271 8K BASIC ROM. Any memory on the card produces a RAMDIS signal on the bus
when it is addressed. This gives the EPROM or ROM priority over any RAM at the same
address.

The card also contains a wait-state generator which, when enabled (a 1link
option), is only activated whilst the card is being accessed. This means that a Nascom
2 owner can move all of his EPROMS and BASIC ROM onto the card and switch off the wait
states on the N2. (I know many N2°s will run without waits anyway, but not according
to the BASIC ROM spec!)

Finally (vyes there is more) the card supports the Page Mode scheme. What’s
that? Well, without going into great detail, (perhaps someone will write INMC80 an
article?) it allows you to have more than 64K of memory connected to your system (up
to 256K in fact) although only 64K can be accessed by the Z80 at any time - sorry, mno
200K Startrek!

Disk System

After the TFEPROM board we started to think about disk systems, but we weren’t
the only ones! One day Dave Hunt said "we’ve got a disk controller going, do you want
to see it?" After seeing the card (of course we accepted his offer) we asked how it
would be sold and were told 'as a kit'. Having previously considered all the
implications of a disk controller kit, drives, PSUs, interconnects, software etc. etc.
we shuddered, and, as regular INMC80 readers already know, decided to produce a
complete unit based on the Henelec controller card. A power supply and case were
designed, a CP/M licence obtained from Digital Research, Pertec double sided drives
selected and, with the addition of the Henelec controller card, the whole lot built
and tested.

The Gemini G805 disk system connects to the Nascom PIO and is available with
one or two drives and CP/M or D-DOS, a simple operating system. The popularity of the
ayatem than land to Business & Leisure Microcomputers introducing DCS-NOS, a much more
sophisticated version of D-DOS with file handling for BASIC, ZEAP, Nas-Pen and machine
code files.

=56~

Supermum

Our attention now turned to the Nascom l. Expansion of this had always been a
messy business as, when Nascom 1 was originally designed, it wasn’t really expected
that anyone would wish to add anything! All owners of expanded Nascom 1ls will no doubt
painfully remember soldering 43 way ribbon cables, and the dreaded memory plague.

The Gemini G806 Supermum is a 12" x 8" board that sits back to back to the
Nascom 1. Tt provides a 5A PSU, 5 slot motherboard, and a buffer section. The buffer
section provides reset jump facilities and gates Reset with M1 -~ something the Nascom
buffer board should have done but didn"t. Connection between the Nascom 1 and Supermum
is via a mini 43-way motherboard.

64K RAM Board

With the advent of disk systems peoples greed (and need) for more and more
memory was rapidly growing. The obvious solution - a single board giving a full 64K of
RAM.

The Gemini G802 “RAM64° 1is a RAM board kit, available in 16, 32, 48 or 64K
sizes. The bus “RAMDIS’ signal, giving priority to EPROM/ROM in the system, means that
a "RAM64” board of any size can be used without any data clashes. Additionally a page
mode option is available (see EPROM/ROM board) allowing four cards to be added to the
system. Although the Page Mode System 1s relatively unexplored as yet, there is a lot
of potential for, for example, phantom disk drives with instant access!

‘RAM64° 1s a full 4MHz board with flexible address selection to 4K boundaries.
The board 1is also available built and tested fully populated (64K) and complete with
page mode, at a very silly price. (Cheaper than some of the kits!)

Miscellaneous

Other existing Gemini products are the Gemini G807 3 amp power supply, Gemini
G601 Reset jump kit (fitted to the Nascom buffer board to give “reset jump’ to any 4K
boundary) and Gemini G808 EPROM programmer. This latter item, produced in conjunction
with Bits & P.C.”s., connects to the Nascom PI0 and can program multi-rail 2708 EPROMs
or single rail 2716 EPROMs. Two low insertion force sockets are provided for “Donor”
and ‘Recipient’ EPROMS. Software is supplied on tape (N2 format) and can program from
the “Donor® or RAM, and read and verify EPROMs.

NEW PRODUCTS

About to be launched by Gemini are three new 8" x 8" boards, two of which can
be used with Nascoms.

Video Card

There has long been a requirement for an 80 x 25 video card for professional
applications and for use with disk systems with CP/M, where many software packages
expect a screen width of at least 72 characters. The trouble with a screen of this
size is that it requires a 2K block of memory te be located somewhere and, 1if the
screen routines are going to support a wide variety of functions, getting on for
another 2K of memory to hold the software. The solution then, with this card, was to
make it I/0 mapped and intelligent!

The Gemini G812 Intelligent Video Controller (IVC) card is Z8B0A microprocessor
controlled. Two screen formats are supported by the card - 80 x 25 crystal controlled,
plus an adjustable dot clock to give a second format (set to 48 x 25 as supplied.)
Output from the card is a 1V peak to peak composite video signal for driving a monitor
— with 80 character wide dieplays, TV sets are not recommended.

The IVC occupies three TI/0 ports of the host system. Port Bl is for
bidirectional data transfer, B2 provides handshake signals, and port B3 is used to
reset the card independantly of the system reset. The character set on the card gives

-
-

128 characters in EPROM, and 128 in RAM. Single commands to the IVC card can define
the 128 RAM characters as the inverse of the main set or as block graphics characters,
giving a resolution of 160 x 75 blocks. Furthermore, byte patterns may be sent to the
card to define your own characters.

The IVC card supports a wide variety of commands (sent as control codes or
ESCAPE sequences.) These include insert/delete character, insert/delete line, clear to
end of line/screen, lock a portion of the screen from scrolling, invert/blank the
screen, set, test or reset a block graphics cell, return a line from the screen (yes,
there is two way communication!}), plus lots more.

Software to drive the card from the host computer is very simple. For owners
of the Gemini GB05 disk system, Richard Beal has already written a new version of §5YS
that supports this card (and also supports screen editing within CP/M!!). Nascom
owners only need enter a short ‘U’ routine - however it must be pointed out that any
program that 1is expecting the screen to be 48 x 16 and memory mapped at 0800-0BFF will
not automatically adjust itself to the new screens’ format and positien!

Disk card

Although the Henelec controller card used in the Gemini G805 disk system 1is
very good, it does have several limitations ~ it is only single density, only supports
up to 3 drives, and runs via the PIO.

The Gemini GR09 FDC card is an 8" x 8" bus card. It supports Pertec FD250
(5.25",48TPI,DS), Micropolis 1015 (5.25",96TPI,DS) and Pertec FD514 (8") disk drives
and can control up to four drives of the same type. Up to 8 drives {2 boards) can be
used 1in the same system. Density is either single or double, selected under software
control.

CP/M 2.2 will be available to support up to 4 Pertec FD 250 drives with the
Nascom. Using double density and 512 byte sectors this gives 350K per drive
(formatted)! The software also supports 8D Systems format te allow transfer of data
to/from the Gemini G805 disk system.

The Other Card

With all of the above cards, Gemini have the complete range for a very
powerful and flexible system, bar a minor item = a CPU card! Hence we have produced an
8" x 8" card which is just that. Although not of immediate interest to Nascom owners,
this brief description completes the details of our product range.

The Gemini G811 CPU card utilises (yes, you’ve guessed it) the Z80A processor
at 4MHz. There are optional wait states, and reset jump to any 4K boundary. Serial I/0
is wvia a WD8250 UART. This gives programmable band rates, stop bits etc. Input/Output
to the UART can be switched between the RS5232 and cassette interfaces under software
control. The RS232 interface supports modem control and handshake signals; the
cassette interface is 1200 band CUTS. A ZBOA PIO is provided for parallel I/0.

Provided on the board are four ‘bytewyde’ 28 pin sockets - these sockets will
accept a wide variety of RAMs/EPROMs/ROMs from the 1K x 8 static RAMs up to the latest
32K x 8 ROMs. (32K x 8? Yes!) The on-board memory block can be switched out of the
memory map under software control, allowing a 64K RAM system to be fully realised.

The monitor is something special! Living at the top of memory (F000), to
programs it pretends it is CP/M, plus it has a range of useful c¢ommands. You don't
have to have disks, but if you decide to upgrade to them later you can take all your
software with you - and the monitor already contains the necessary bootstrap routines
to run the Gemini G809 FDC card. This is real expansion without redundancy!

Availability

All of the items in the first part of this article are real products and
available now. The last three items are finding their way into production as I write
(they’1ll onlv be available built and tested) and mavy well be on demonstration (or even
available) at your distributor by the time you read this.

Gemini Microcomputers does no direct selling, and the above items are ONLY
available (in the UK) from the following companies: Bits & P.C"s., Business & Leisure
Microcomputers, Electrovalue, Henrv' s Radio, Interface Components, Target Electronics.

-58-

IMPRINT

The IMPRINT: a review. Rory O’Farrell

The IMPRINT is a new operating system for the IMP printer. It comes in the
form of a new EPROM, which is substituted for that provided as standard in the IMP.
With the addition of this EPROM, your IMP has a number of important new facilities.

Firstly it has the facility, under software control, to print either normal
sized characters, or double sized characters, which it prints 40 to the line. All
characters can now be printed unidirectionally or bidirectionally, by sending the
correct control code to the IMP. The IMP can also interpret Control T as a tab
character, and steps across the page to the next multiple of 8 columns, thus becoming
compatible with the Tab function under the CP/M disk operating system. Control L (code
0C) is recognised as a form feed command, and causes the IMP to advance the paper by
six lines.

Connection of the IMP to your system remains unchanged, the Busy line behaving
as previously. The new system immediately makes the IMP sound different. The reason is
not hard to find. Examination of the manual discloses that the IMP is effectively
printing at twice the speed (unless you have been changing the preset power up
options). Gone is the change to unidirectional printing when there are more than forty
characters on a line. Why doesn’t the head overheat? The manual explains that the head
is rated for continuous printing, and the only character which caused occasional
difficulty was the rubout character - the white block. This character has now bheen
changed to an inverted 7 , and in consequence 80 characters per line can now be
printed in bidirectional mode. This option can be disabled under software control, so
that when best alignment 1s required in the type it can be obtained by selecting the
unidirectional mode.

If the Line Feed button is held down as Reset is pressed on the IMP, it will
immediately set to, and print its character set four times, both in standard and
double width. When you have installed the EPROM, this is the easiest way to check that
all is as it should be.

What happens if you have an application which demands heavy lines across the
page, as it might be, lines of the old 7F white Block? All is not lost! The IMP has
one surprising addition:

A HI RES GRAPHICS FACILITY!!!

This facility, in addition to the previously mentioned facilities, make the IMP
unsurpassed value for money! It now acquires the facility to plot hi res graphics all
across the page, on receipt of a 1F code (control _). When it receives this character,
it prints out what is left of the buffer, goes to the lefthand side of the print area,
and feeds to a new line. Tt then proceeds to gather the next 760 Bytes, and interpret
the 7 least significant bits of each byte as instructions for each print needle (bit
6=top dot, bit O=bottom dot). When 1t has these 760 bytes (they take a fair while to
send - over 6 secs at 1200 baud) it prints the line. In printing the line, it takes
account of the head specification, which says that a dot can not be printed in two
columns in succession, and if it finds such an illegal condition, it resets a dot or
dots. To indicate that it has interfered with your data, it turns on the Red Error
LED, and turns it off at the end of the line. This allows you to plot 380 dots across
the width of the page at any one time, and you have 760 columns at your disposal. When
the graphics line is finished, the IMP feeds by the amount of the line only, so that
another graphics line can be printed below and immediately contiguous. In this way 1t
will be possible to plot quite fine resolution graphs, displays and pictures. I have
in mind using the IMP to plot soil resistivity data from Archaeological surveys, which
T had been naoked to procesn. The plet £from the IMD will wvery quickly give an

indication of the result, without having to go to the trouble of doing a detailed
manual plot.

~-59-

Tt would not be out of place to list here the various comntrol codes and their
functions:

Code 02 (CTRL B) sets bidirectional print. This mode gives maximum throughput
- say 65 chars per second!

Code 03 (CTRL C) sets unidirectional print. This gives best alignment for
columns of figures. The command is obeyed immediately on receipt.

Code 04 (CTRL D)} sets double width printing. This character is queued in the
buffer, and only takes effect in its appropriate place. It is automatically reset at
the end of a line.

Code 05 (CTRL FE) sets single width characters. All lines start out in this
condition, so you must reindicate by a CTRL D if you want double width after each line
feed.

Code 08 (CTRL H) Backspace. This will only backspace within a line. It will
not pass a Line Feed (0A), a Carriage Return (0OD) or a Form Feed (0C).

Code 09 (CTRL I) Horizontal Tab. This will cause the print head to print
gpaces until it is at the next column which is a multiple of 8.

Code 0A (CTRL J) Line feed. This prints any preceeding characters in the
buffer, and advances the paper by one line.

Code 0C (CTRL L) Form Feed. This causes 6 line feeds in succession.

Code OD (CTRL M) Carriage return. This causes any preceeding characters in the
buffer to be printed, and if the strap option is set in the IMP, causes a line feed.

Code 1F (CTRL _) Graphics Mode. Prints out the Buffer, and puts head at
lefthand side on a fresh line. Then it interprets the next 760 Bytes as a dot patterm,
and prints them across the page. At the end of the line, it feeds enough for another
graphics line to join below the last one, and the IMP returns to the normal type mode.
1t is necessary to reinvoke the graphics option at the start of each line of graphics.

These are the options, with the addition of the self test on reset. Without
any doubt, the IMPRINT is a very worth while addition to any IMP. The alteratlon to
the rub out character to allow continuous bi-directional printing alone allows the
throughput of the IMP to be nearly doubled (38 chars per sec to 65 chars per sec from
my measurements!) and may put off the evil hour when a faster printer becomes
essential. Those who have had to wait two hours for the latest edition of a printout
will know what I mean (and sympathise?).

The IMPRINT comes with a well commented and well printed set of documentation.
There is one error in it that I found. The reference oun page 3 to code 04 should be to
code 02. With my copy, there was no mention of how to put the EPROM in position. I
hope that this will be rectified shortly. To open the IMP, you will need a 3/32" Allen
hex key. Unplug the IMP from the mains (dying is something vou usually only get omne
chance at!) and open the two little black studs on each side with the Allen Key, which
can be got in any good toolshop or engineers providers. Very carefully, slip the case
off, and lay it on its back beside the machine. It 1is still connected to the IMP by a
loom of wire, so try not to put too much tension on these wires. Then, with a long
handled fine screwdriver, working from the front of the machine, insert the screw
driver under the EPROM, which is about 1/3 of the way across the machine, pointing
front to back. Very gently, vou can twist the blade to free this EPROM, until it can
be lifted out. It should be held only by the ends, not by the pins. The new EPROM can
be placed in position, holding in the same manner, with the orientation dot or dimple
on the end facing the print mechanism, and pushed down gently into position. The old
EPROM should be placed into a piece of antistatic foam, or foil wrapped airfoam, and
kept until a use arises for it. It could be reprogrammed with a new character set for
an N2, or an Nl with Econographics. Having inserted the EPROM, now is the time to
lubricate the innards of the IMP. A drop of oil on the polished guide rail, the frame
edge, the helical cam, and the ribbon driver are all that is required. Now put the top
back, screw in the screws, thread the paper, and plug in. Turn on, hit reset, while
holding down the Line feed button. The machine will enter self test mode, and print
away busily for about 25 seconds. The rest is up to you!

The IMPRINT is avallable from Interface Components (and possibly other Nascon
distributors ?), costing #30 plus VAT. The author, David Parkinson, 1is to be
congratulated on having got so much into so little.

-60-

Game Ildea

PIRANHA FISH

Have you ever come home from a hard day at the ‘Grunge Foundry’, had dinner,
thrown the Radio and TV Times on the floor in disgust, walked into the other room,
switched on the computer, and then like the organist in the ‘Lost Chord’ typed idly at
the keys. Then had this brilliant idea for a program to write, only, within a
twinkling the inspiration has vanished. No? Oh well, forget it. How about those of you
who are quite capable programmers, but can never thimk of anything to program? May be
it’s Sunday afterncon, and having mowed the kittenms, you’ve nothing better to do.
Either way, I was Llooking through a manual for ‘Tiny-C’ when I found the following
demonstration example, and thought, "There’s a marvellous program for the INMC80,
given someone with the time to write it, and a sufficiently warped imagination.” Well
for all of you with warped minds and nothing better to fill the time, here are the
rules, they make hilarious reading in themselves.

You are on safari, and your party consists of the following unlikely people.
2 Cannibals
2 Big-game hunters
1l Doctor
1 Nurse and
3 Missionaries

You have arrived at a river 100 yards wide, filled with hungry piranha fish.
There is a leaky canoe by the shore, and as you must cross the river, that is the only
transport available. Worse, it will hold at the most only four people. The canibals
paddle the best, followed by the hunters, the doctor, the nurse, and lastly, the
missionaries who are notoriously weak. You have to decide who will take the canoe each
trip back and forth, thereby getting the whole party across with the minimum of
carnage.

The doctor can attend major and minor wounds, unless he himself 1is wounded.
The nurse can attend minor wounds, or if the doctor is wounded but on the same shore
as the nurse, the nurse can attend to major wounds under the guidance of the doctor.

The speed of the canoe is the average of the paddling strengths of the people
in the canoce. A speed of 100 units is required to paddle to opposite shore just as the
canoe sinks. The initial paddling strengths are:

Cannibhals 120
Hunters 90
Doctor 70
Nurse 50
l..ssionaries 40

Strengths should be multiplied by the following factors for unhealthy paddlers:
Minor wound, attended 0.9
Major wound, attended 0.8
Minor wound, unattended 0.8
Major wound, unattended 0.7
Dead 0.0

During the trip across the river, certain events will happen with the
following probabilites:

The Canoe fills with water at a predetermined rate.

During each yard (speed divided by 4) of the trip a single
piranha fish will jump into the boat with a probability of
N0.25. The fish will always select a random toe. Cannibals
will always spear the fish, but half the time they will
make a hole in the canoe by doing so. Hunters always panic and
capsize the boat. The Doctor is quick half the time avoiding

-61~

the piranha, and panics half the time. The Nurse always
panics, but half the time she is calmed down, and half the
time she jumps (alone) out of the boat and must swim ashore.
When the boat capsizes, everybody must swim. Dead people always
float to the correct shore, and incredibly, the cance gets
there too.

When swimming the events that follow may occur to each person in the water,
individually:

Dead people always float ashore

Live people make it ashore unscathed half the time. The other

half, they aquire minor wounds (probabilty 0.67) or major

wounds (probabilty 0.33). In no case do they come out of the

river healthier than they went in. (Note, these probabilities

could be made worse the further there is to swim.)

On shore the victims health may become worse with the following probability:
Healthy people never get worse.

Attended people get worse with a probabilty of 0.11.

Unattended people get worse with a probability of 0.33.

Dead people never get worse.

To get worse means that a minor wound becomes a major wound or
a person with a major wound dies.

When a minor attended wound gets worse, it become a major
unattended wound.

The ‘Worse Health” events should be computed for each person
once per canoce trip, whether or not the person participated in
the latest trip. So people who were wounded early in the game
have more chance of getting worse that people wounded later.

Scoring:
1000 starting maximum points
=100 for each dead person
-30 for each major unattended wound
-15 for each major attended wound
-10 for each minor unattended wound
-5 for each minor attended wound

Certain programmers with particularly warped minds might like to modify the
program for a ‘Maximum carnage game’ (minimum score). To do this you need a new rule:
On each successive trip you must leave at least one more person on the shore than the
previous round trip.

Happy paddling.

280 Ops

On the following pages are charts submitted by Mr. J. Rollason, to whom many thanks.
They show all the 8 and 16 bit operations that can be performed on the 280, along with
details of the number of T states and number of bytes.

EA

].6 BIT OPERATIONS

£ 10 1 10 20
1 T 3 [20
HL IX I¥ hh (hn) y
(nn)
\Lu,
TLD
S AbD HL—','—
P ADC T3
SP sacg T
T Aadbb ITX L
INC ¢
BEC- 1
10 1§ (11
3 3 '
hn (nn) (hn)
Lb p Ld
1 pop L Anb gC 0 " e U
R pop— | e— AL 's = PusH€E— —> Aabc} HL
: H srsc} DE = D HL mci 2
’[‘ HL.
INC
bec +
'2_0
o 2e *
i i
nn [(hhn) (hr)
N . o
Be BC Tx (o)
[TX s 15 T v? 18
7 pop—3 I ABD | - 2 Zevsne— I’; —>ADd Ty (1vy 3
X (F)
Iy (ly)
INC lo
bDEC 2
?,3
e 20 *
3 &
hn (nn) (h#)
L Tm
[8c B ane H ’
Io It C ADC L
v PP pE v Pusk< bE 3se.c} 3
T Ak IX s
INC ¢ Ly *
bEC T
K—-\ ﬁ h ! “T CYCLLES
DE HL GP) IXTy (sp) WL Y TN ByTes
A ~.A 1
b 23 12
] a]

T Dot ASoNn

63
8 BIT OPERATIONS

' 1 1 I 3 T Yy ¥ 3 1 - ¥ -
Ix L/ x+d\ /¢ ! I;L/ 3 T Ixsad ¥
. /H o
w Ty ho (R I’”"*) (s€) (nr) F Tyim (hn) (HU(Ide) (<)
Ly - ". l_:.. TLB -
]
A je——TIXYH g A .
Tyt/n, t
[no 3
INC L (Hu) z
bec 7 '.DH-J)
Tres] 3 12
3 a—
£ &£ z 2 p * ¢ F B
] [] +
IxiL/m X
Ix/w (Ix-i-:l) " (‘"L)(z -
b yom n (AT ea Iyi/u y J
[T
. Arutd "
k — A
h:rc [
hec !
8t g s
L k]
ITxL/H p IXL/M
Tyww N Tyi/H
L TLb
1 IX-L/ AMTH s
I xL/d (7 13
|LYL/H IYL/H > A 3
INC §
pee * P oiwcivnes A H. L, B, D LE
ITxXL/H ReFens ™ TXL ¥ IXH
1 RiT operAaTIONS Tye/m o = Ty L IyH
b (W) (i;::) NoTE 3 TIXL/H k LYL/R CannoT
BT % -'-.:_“— 20 BE USED WwiTH H L L.
SET * 15 z‘; 1.E Lb H IxL wouth 8e LD TxH IxL,
RES ; |ts _,:; ALSN . IXL/H (CAwNoT BE USED WiTW
= z g YL/R
7 swiers & by 3 e TxL/H PREFIX IS 2bb
l} SHIFTS % on 'ﬂ. oxly THE IYL/H AL . an
€. iLtbA H = Lb A TXH
NON REGISTEZ ARITHMETIC NON RE(GISTER TRANSFERS
IK-I-d) ’9 h i
(HL) Iy +4 _:/ \T
1x 1%
2 3 IX+d
Ine Inc (I)H-J) (n)
bEC bEC

-54-

Strings

STRINGS IN BASIC (AGAIN) G.T.Klement

After reading INMC NEWS 80/3 , I think you will possibly be interested in a
routine which saves and loads string arrays in BASIC.

Since I am a beginner in machine code programming, I am sure there are better
solutions so take it for a first step to solve this problem.

Here is a ZEAP file with the source code, so you may easier test this
routine. After the ZEAP file 1 have added a short BASIC program for demonstration.

ZEAP 280 Assembler - Source Listing

0010 ; ===== STRINGSAVE V4 ======
0020 ; 17.3.81
0030 ;
0040 ;
0050 ; DATA FORMAT BASIC
0060
0070 ; Nam Dis Sub DIM+I DIM+] L / CcHP
0080
0090 ;11121 3141 I5] lalb| lalbl] AlB|C|D]|
0100 5| _[_b 1o h b T et
0110

22FF 0008 0120 RIN EQU #8

22FF 000D 0130 CRLF EQU #0D

22FF 0028 0140 PRS EQU #28

22FF 0030 0150 ROUT EQU #30

22FF 0038 0160 RDEL EQU #38

22FF 0058 0170 MRET EQU #5B

22FF 005D 0180 TDEL EQU #5D

22FF QOQ5F 0190 MFLIP EQU #5F

22FF 0066 0200 TBCD3 EQU #66

22FF 0068 0210 B2HEX EQU #68

22FF 0068 0220 ERRM EQU #6B

22FF 006D 0230 SOUT EQU #6D

22FF Q06F 0240 SRLX EQU #6F

22FF 0070 0250 SRLIN EQU #70

22FF 0071 0260 NOM EQUu #71

22FF 0072 0270 NIM EQUR #72

22FF 0077 0280 NNOM EQU #77

22FF 0078 0290 NNIM EQU #78

22FF 0686 0300 LODEND EQU #0686

22FF 068A 0310 SAVEND EQU #068A

22FF 080A 0320 SCREEN EQU #080A

22FF OClE 0330 ARGIO EQU #0CIE

22FF 105A 0340 BEGCLR EQU #1054

22FF 10C3 0350 CLRTOP EQU #10C3

22FF 10DA 0360 BEGFRE EQU #10DA

22FF 10D8 0370 BEGARR EQU #10D8
0380 ;

0cco N340 ORG #CCO
0400
0410 H *kkkkkk DRTIVER SAVE %% kkkiikkk
0420

0CCO DF77 0430 DRSAV SCAL NNOM

0cc2 E5 0440 PUSH HL

0CC3 ES 0450 PUSH HL

OCC4 CDDDOC 0460 CALL FIN

0ce7 ci 0470 POP BC

0CC8 CDO60D 0480 CALL MATRIX

0D66 DF77
(0D68 E5
0D69 DF78
0D6B ES
0D6C CDDDOC
OD6F DF5F
0D71 CDO&0D
0D74 CD7ADD
OD77 C38606

OD7A ES
OD7B ED5BI1EOC
OD7F 2AC310

0D82 CF
0D83 FEFF
0D85 20FB
0D87 0603
0n8s CF
ODS8A FEFF
ODBC 20F4
ODBE 10F9
0D90 CF
0ODS1 4F
0p92 CF

0D93
0nsg4
0D95
0D96
opg7
0oDn9sg
0D9A
0D9B
0D9C

13
12
13
13
B9
2028
AF
B9
2827

0OD9E
OD9F
Opal

47
ED42
22C310

ODA4
0ODAS
ODASG
0DAA
0DAC
dpap
ODAE
0DbBO
ODB1
ODB2
ODB3
ODB4
ODB5

b5
E5
ED3B5A10
ED52
El
Dl
3826
D
12
iC
13
12
1B

0DB6 41
0DB7 OEOOQ

1690
1700

-65~

; *kkkikk DRIVER LOAD **&kiik

1710 DRLOD SCAL NNOM

1720
1730
1740
1750
1760
1770
1780
1790

1800 ;

1810
1820
1830
1840
1850
1860
1870
1880
1890
1500
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
21290
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270

PUSH HL
SCAL NNIM
PUSH HL
CALL FIN
SCAL MFLIP
CALL MATRIX
CALL LOAD
EXITL JP LODEND
b
; ==== SBR LOAD ====
T.OAD PUSH HL
LD DE, (ARG10)
LO LD HL, (CLRTOP)
; —— In Header -—-
L1 RST RIN
cp #FF
JR NZ,Ll
LD B,3
L2 RST RIN
Ccp #FF
JR NZ,Ll
DJNZ L2
RST RIN
LD C,A
RST RIN
; ——— Check Header & Range ---
INC DE
LD (DE),A
INC DE
INC DE
cp C
JR NZ,L5
XOR A
CP C
JR Z,L5
; ——— Cale. Chr.pointer --—-
1D B,A
SBC HL,BC
LD {CLRTOP),HL
3 ——— Test for CLEAR Range ---
PUSH DE
PUSH HL
LD DE, (BEGCLR)
SBC HL,DE
POP HL
POP DE
JR C,ER2
LD A,L
LD (DE),A
LD ALH
INC DE
LD (DE),A
DEC DE
3 === Data in --—-
LD B,C
LD c,0

ODBI
ODBA
ODBB
ODBC
ODBD
ODBE
O0DCO
0OpCl
0DC?2
onesS
0nce
oDpC7
0pC8
opco
0DcA
once
0DpCD
ODCE
ODCF

0DD1
0DD2
0DD3
0DD4

0DD6
0DD7
0DD9
0DDA
onpc
ODDD
ODDE

CF
77
81
4F
23
10F9
CF
B9
C2D10D
13
Ccl
0B
AF
B9
2002
B8
c8
C5
1BAE

EF
3F
00
18EF

EF
4F4D
00
DF6B
El
El
1897

2280 1.3
2290
2300
2310
2320
2330
2340
2350
2360
2370 L5
2380
2390
2400
2410
2420
2430
2440
2450 L7
2460
2470
2480 ;
2490 ER3
2500
2510
2520

2530 ; ==

2540 ER2
2550
2560
2570
2580
2590
2600

RST RIN
1D (HL),A
ADD A,C

LD C,A
INC HL
DINZ L3

RST RIN

cP C

JP NZ,ER3
INC DE

POP BC

DEC BC

Z0R A

CP C

JR NZ,L7?
CP B

RET Z
PUSH BC

JR LO

LOAD ERROR ====
RST PRS

DEFM /?/

DEFB 0

JR LS

OM ERROR ====
RST PRS
DEFM fOM/
DEFB 0

SCAL ERRM
POP HL

POP HL

Jr EXITL

ZEAP 280 Assembler - Symbol Table

OClEH
10p8H
10DAH
COODH
QCCOH
0DD6H
006BH
OCDAH
OCF5H
0CD2H
OD82H
ODB9H
ODCEH
0686H
0D15H
0D24H
005FH
0072H
0077H
00Z8H
00081
OD30H
oDsé6H
0D28H
080AH

0070H
NOAAY

0330
0370
0360
0130
0430
2540
0220
0600
0750
0550
1860
2280
2450
0300
1040
1170
0190
0270
0280
0140
0120
1260
1550
1220
0320
0250
0200

ARG1O
BEGARR
BEGFRE
CRLF
DRSAV
ER2
ERRM
EXITS
F2

Hl

L1

L3

L7
LODEND
M2

M8
MFLIP
NIM
NNOM
PRS
RIN

51

£3
SAVE
SCREEN
SRLIN
TR

B2HEX
BEGCLR
CLRTOP
DRLOD
ER1
ER3
EXITL
Fl

FIN

LO

L2

L5
LOAD
Ml

M3
MATRIX
MRET
NNTM
NOM
RDEL
ROUT
82

g4
SAVEND
SOUT
SRLX
TDEL

00681
105AH
10C3H
OD66H
OCFEH
(ODD1H
aD77d
OCEOH
OCDpH
OD7FH
0n89H
ODC5H
OD7AH
0DOBH
OD1BH
ODO6H
005BH
0078H
0071H
00381
00301
0p40H
OD5BH
068AH
006DH
006FH
O05DH

0210
0340
0350
1710
0830
2490
1790
0640
0630
1840
1900
2370
1820
0950
1100
0930
0170
0290
0260
0160
0150
1420
1590
0310
0230
0240
0180

-66-

0490 ; -~- Header out ———
0CCB 0 SH B
€3 200 PUSH BC OD1B 09 1100 M3 ADD HL,BC
0CCC DESF 0510 SCAL MFLIP
: oD1C 1B 1110 DEC DE
OCCE DF5D 0520 SCAL TDFL
0CDO AF 0530 XOR A 0DLD BB 1120 ce E

OD1E 20FB 1130 JR NZ,M3
0CD1 47 0540 D B,A o oa 120 ORI
0CD2 DF6F 0550 H1 SCAL SRLX
oba 1omC o0 e 0D21 20F8 1150 JR NZ,M3
0eDe Cl 0570 bop BC 0D23 Fl 1160 POP AF

e e gevt Dt —e- 0D24 3D 1170 M8 DEC A
0CD7 CD280D 0590 CALL SAVE gg;g ggEE }igg igr NZ,M2
OCDA C38A06 0600 EXITS JP SAVEND on
0610 ; [o
0620 5 ==== SBR FIND ==-= 0D28 3ALEOC i%ég SAVE EBR SﬁvaQEIB
OCDD 2ADE10 0630 FIN LD HL, (BEGARR) OD28 AIE 1220 Lg ot)
OCE0 EDSBDAIO 0640 ¥l LD DE, (BEGFRE) o AALFOC 1240 o aare10y41
OCE4 ES5 0650 PUSH HL

OD2F 47 1250 LD B,A
OCES ED52 0660 SBC HL,DE
onr o 0e70 el 0p30 03 1260 S1 INC BC

OD31 0A 1270 LD A, (BC)
OCES F2FEOC 0680 JP P,ERL

E 0D32 SF 1280 LD E,A
OCER 3EBO 0690 LD A,"O+#80

0D33 03 1290 ING BC
OCED BE 0700 CP (HL)

0D34 03 1300 INC BC
OCEE 23 . 0710 INC HL

0D35 E5 1310 PUSH HI,
OCEF C2F50C 0720 JP NZ,F2

: OD36 0A 1320 LD A, (BC)
0CF2 3E44 0730 LD A,"D

OD37 6F 1330 LD LA
OCF4 BE 0740 CP (HL)

0D38 03 1340 INC BC
0CF5 23 0750 F2 INC HL
; 0D39 0A 1350 LD A, (BC)

CFG SE 0760 LD E, (HL)

OD3A 67 1360 LD H,A
0CF7 23 0770 INC HL 0D3B C5 1370 PUSH BC
0CF8 56 0780 LD D, (HL) e e
OCF9 23 0790 INC HL » ata ou
OCFA C8 0800 RET Z OD3C AF 1390 XOR A

' OD3D FF 1400 RST RDEL
0CFR 19 0810 ADD HL,DE ;
ore 1882 D820 pralen OD3E 0605 1410 . LD B,5

0830 - 0D40 DF6F 1420 52 SCAL SRLX
]
s e S GnT B A
QCFE FE1 0850 ERI1 POP HL
OCFF El 0860 POP HL OD46 43 1450 LD B,E

OD47 AF 1460 XOR A
0D00 K1 0870 POP HL oDar At P XoR
0DOL DF6B 0880 SCAL ERRM

0D49 78 1480 LD A,E
0DO3 DF71 0890 SCAL NOM
05 09 5900 BT OD4A DF6F 1490 SCAL SRLX

0910 - OD4C DF6F 1500 SCAL SRLX
i E P o} U
0DO6 46 0930 MATRIX LD B, (HL) ‘

0D53 0608 1530 D B,11
0D07 78 0940 LD A,B
0DO08 23 0950 M1 NG HL U35 79 1540 LD A,C

0D56 DEF6F 1550 $3 SCAL SRLX
0D09 SE 0960 LD E, (HL)

OD58 AF 1560 XOR A
ODOA 23 0970 INC HL .0D59 10FR 1570 DINZ S3
ODOB 56 0980 D D, (HL) L S ers
0DOC D5 0990 PUSH DE ; olnters

0D58 C1 1590 S4 POP BC
0DOD 10F9 1000 DINZ M1 onae Bl Leo0 or i
ODOF 221E0C 1010 LD (ARG10),HL

0D5D 2B 1610 DEC HL
0D12 El 1020 POP HL Onan 1620 on
OD13 180F 1030 JR M8 A L630 o L
0D15 44 1040 M2 LD B,H 0D60 20CE 1640 JR NZ,Sl
OD16 4D 1050 b C,L ooy o Tes0 gl
On17 ml 1060 POP ~ DE OD63 20CB 1660 IR Nz,S1
OD18 F5 1070 PUSH AF ons o6 oo T
OD19 AF 1080 XOR A Loa0 <
OD1A 1B 1090 DEC DE ’

-67~

And now the BASIC program. There is one important rule to load the array:

The array is stored in the free space below the last wvalid string in the
string garbage area. So one has to force the garbage collect routine with "PRINT
FRE(0)" after the "USR(0)" command for loading the array.

l REM w-- STRINGCSAVE ~--~
2 REM G.T.KLEMENT 17.3.81
9 REM

I REM ERROR MESSAGES:
11 REM SAVE Error Variable not defined

12 REM Program returns to

13 REM BASTIC.

15 REM LOAD ? Read error.

16 REM a)LEN :Block not

17 REM loaded

18 REM bIYDAT :Block

19 REM loaded

20 REM OMError CLEAR Range to small

21 REM Read sequence interrupt
22 REM no MSG Variable was improper

23 REM dimensioned.

24 REM

100 REM*kkkkhkkikhhkkkhhkkkAkrhhkhkhkARAXRRAA ALK AR
110 REM* POKE machine code *
120 REM#* *
130 REM* *
140 REM* RAM from 3264 to 3552 = CCO-DEO *
150 REM* M"SAVE'" : DOKE 4100, 3264 CLLCECLLL *
160 REM* "LOAD" : DOKE 4100, 3430 CLLLLLLL K
170 REM* Call routine with USR{0) *
180 REM* Variable (default)} : DOS *
190 REM* Define Variable : *
200 REM* POKE 3315,ASC("1.CHR™) gL k

210 REM* POKE 3305,ASC("2.CHR")+128 <<<<<e<g *
220 REMAKAKRAARRKAARRARKARKRRAAARKAAARKRARARA A A AR
230 REM

240 REM ~-- Poke to memory -—--

250 RESTORE300

260 FOR I=3264 TO 3552 STEP 2

270 READ J: DOKE I,J: NEXT

280 RETURN

290) REM #®#&*kxk% DATA *KAkkkkkhkhhhhhkhhhhhkk
300 DATA30687,-6683,-8755,-16116,1741,-15091
310 DATAZ4543,24031,18351,28639,-1008,-12863
320 DATA3368,-30013,10758,4312,23533,4314

330 DATA-4635,-7854,-270,15884,-16720,-15837
340 DATA3317,17470,9150,9054,9046,6600

350 DATA-7656,-7711,-8223,~8341,-13967,30790
360 DATA24099,22051,4309,8953,3102,6369

370 DATA17423,-11955,-20491,2331,-17637,-1248
380 DATAB8378,-3592,8253,~13842,7738,20236

390 DATA7994,18188,2563,863,-6909,28426

400 DATAZ2563,-15001,-81,1286,28639,~194

410 DATA-1520,-20669%,31675,28639,28639,234458
420 DATA-8435,1645,30987,28639,4271,-15877
430 DATA11233,-16977,-12768,8380,-13877, 30687
440 DATA-8219,-06792,-8755,-8436,-12961,3334
450 DATA31437,-15603,1670,-4635,7771,10764
460 DATA4291,-305,8447,1787,-12541,=-2

-G8~

470 DATA-3040,-1776,20431,5071,4882,-18157
480 DATA11040,-18001,10024,-4793,8770,4291
490 DATA-6699,23533,4186,21229,-11807,9784
500 DATA4733,4988,6930,3649,-12544,-32393
510 DATA9039,-1776,-17969,-11838,4877,3009
520 DATA-18001,544,-14152,6341,-4178,63
530 DATA-4328,20463,77,27615,-7711,-26856
540 DATA16873

G.-T.Klement
Troststrasse 100
1100 WIEN
AUSTRIA

IMPERSONAL

Scurrilous Musings by Guy Klueless

It was recently announced that Nascom has been bought by Lucas Logic {(pity
no~one remembered to invite me to the celebration), and this started my mind thinking
about all the benefits that such a giant could offer Nascom. For instance, have you
ever had trouble connecting things to all those tiny little pins scattered all over
the N2 board? Perhaps we’ll now see these changed for nice sensible quarter inch Lucar
connectors!

From the advance copy I've seen of this issue of the newsletter, it seems that
Gemini gets more than 1it’s fair share of space. Well, we all know from our basiec
astrology that Gemini is (are?) the “twins”. But do you know the twin’s names? Yes of
course, 1it’s Castor and Pollox. So, from now on you know that Gemini is Castor and
Pollox. Please make sure you’ve got the right teeth in if you're going to say that
quickly. (Reminds me of all the permutations of the Accles and Pollock ads we used to
have on the London tube.) Any (printable) suggestions please?

On the subject of Cemini, did you know that a soon to be announced Hewlett
Packard computer (using twin 16 bit processors) has been dubbed with the “in-house’
name of ‘The Gemini Computer’. Reports suggest that Gemini aren’t pleased, and will be
even less pleased if the advertising copywriters latch onto the name. Me? T didn’t say
a word, did 17

We hear reports of Nascom power supplies starting to get embarrassed by the
ever increasing loads being 1imposed by the endless goodies users will insist on
fitting to their toys. There are red faces in the Henry’s camp, because the genius who
designed their 1interpretation of the theme included a spuriocus 0.68R resistor in the
unregulated 5V rail (to limit regulator dissipation when lightly loaded, they say),
which means that their PSU exhibits spectacular hum bars on the display when pushed.
Answer, take it out. Anyway, to overcome the shortage of juice, there’s always
Nascom’s 8 amp PSU, assuming you can afford a second mortgage or Aztec do a very
small neat switch mode & amp PSU at the 100 off price of 52.00. WNow that price is
interesting when you consider Tangerine (you know, those bright orange things) are
offering a switch mode 6 amp PSU with Aztec written all over it, for the one off
retail price of 49.00. Makes you wonder what sort of deal they came too.

Overheard in a shop recently, the remark made by a cash paying customer buying
a disk system. In reply to his wife’s comment that 700 quid was a lot to sheéll out for
such a small box, he said, "I know dear, but it” 1l make a lovely honkend!'.

And in conclusion, the postscript to a letter from a member suggests that if
your Nascom is poorly, then you should try Lucas-aidl!

oW Lucas Logzc, dashing
young scion of a powerful
British family, perceived
the true excellence of the splendidly
developed Nascom, rescued her
from penury, bestowed on her the
family name and, by so doing,
vouchsafed her shelter and
a future rich with
prospects

nascom Microcomputers Is now
a Division of Lucas Logic Limited.

Lucas Logic l’

Lucas Logic Limited, Welton Road, Wedgnock industrial Estate,
Warwick cv34 5P2. Telephone: Warwick 497733,

17 NASCOM 1&2 -MUSIC BOARD i §
. Extremely s:mple to program in basic The CHE

BRITISH MABE

-GenerateS notes over an 8 octave a0 Loty

Keyboard

*POSITIVE STROBE. ~ CHIP BY GENERAL
o t 5V 1y INSTRUMENT (G 1)

L] . .
Dnven from parallel OUtpU FULL ASCI JTTLoutpur “ESCAPE SHIFT Ideal for use with TANGERINE,
|nt0 Hi-Fi fu" CHARACTERS SUPERBLY MADE RETURN & RESET TRITOM, TUSCAN, APPLE snd most
S | a‘ * PARALLEL OUTPUT SIZE13x 551 KEYS computers. Ex-Stock rom HENRY'S
WI{TH STR 1.5 B This 15 detiny
ains notes with no CPU overhead. . 0B CONTROL. AEPEAT Thisiemion sl ous s

POWER LIGHT ON * BLACK KEYS WITH & BLL AR
te Wlth full documentatlon and CONTROL WHITE LEOGENS Cnmp\ele Wil DATA tomitores e g o gt post

rammln exam Y X y'iable rar tise wi
5%865 S mbled and The ADple Power Supply |1 o /

-
teSt VENTILATED POWER UNIT WITH BUILT IN DVERLOAD .
&CUTRUT PROTECTION CIRCUITS f

» Multi boards may be used to T gl e Sy 20t o

SPECIFICATIONS switching” puwer supply Whele most
rea ect . Input vultsys 210-250y other power supples use o Jarge
g Supply volrages: +5 0 franstormes sath many windings ro
' £0neerT the input verage into many lesser

for further details phone 0582 35930 o ot 60 weltages and Hrers ract fy and regul et

watts max tufl [oad) these lesser voltages, the Apple Power
Full lnan nowes putgul: Supply furst canvans the AC ine voltage
+Bv 25 amp; - 5v 250ma, info a DC valiage and then ises this OF Y

REPLACEMENT NASCOM INTER - (o 1same Ciy asoms e pe st ey
CONNECT'NG CABLE w H MlJS C W:ghl hppra ‘)(3 s ‘Flieir’!‘;:rtlu: ;i_::lal\ l‘v[anslumlerrhwnh marlw)
BOARD HEADER CONNECTORS £4 99 Complete with full data wrndmgs a{eerr\ife?n ?3;3\:?94 " e

& infoamation - . PREVENTS DAMAGE & RETURNS UNIT TD NORMAL

SOFTWARE FOR INSTANT ENJOYMENT -
re ensive musu: r ram, ’ P .

MUS MAKER’,can handle mu iple gﬁ(il B g:::{ x ﬁ‘u?“?" Keypad

channels (16'(mm) £7:50 3y £1l]95 m: Fcaiufnngmﬂcgn TIJPE':(OTESI:JI.!JTIAT?EUF:[':‘T?EISIES

P&P 65 pence per order. ; AU ER LA SUPPLIED BRAND NEW WiTH 0ATA

BB. Dept.N, 82 Buckingham 7RI CONPERKIT DIVISTON — aar—

404 Edgware Road. Landon, W2. Englamd

Gnglneel’lng Drl\/e Luton Beds Telephone: 01-402 6822 | ton e e ‘

Telex: 262284 Mono Transanics

Machine Code Programming for the Nascom 1 & 2.

This highly successful book has proved to be well regarded by all those who
have seen it. The reader is taken step-by-step through the Z80 instruction set, with
examples for entering into the Nascom.

Price 4.95 (P&P 1.00)

BASIC Programming for the Nascom

This book works through the command set of the Microsoft BASIC as implemented
on the Nascom. Examples are given at every stage. This is ideal for the newcomer to
BASIC and the Nascom.
Price 4.50 (P&P 1.00)

ITMPRINT

IMPRINT is a new monitor program that replaces the NAS~PRINT fitted inside the
IMP printer. In addition to the normal IMP functions it provides hi-directional/
uni-directional print selection, double width printing, self-test feature, form-feed
recognition, plus a full bit mapped graphics facility.
Price 30.00 (P&P 0.50) + VAT

INTERFACE COMPONENTS LTD.
OAKFIELD CORNER, SYCAMORE ROAD, AMERSHAM, BUCKS HPG 6SU
TELEPHONE: 02403 22307. TELEX 837788

