

NASCOM

1 \& 2

AY-3-8910 Programmable Sound Chip

YES - This IS the amazingly powerful "Clang, Bang, Zap, Tweet" sound \& music generator, with three channels which can be independently programmed for sound output and amplitude.In addition it has an 'envelope controlled' noise generator, ideal for creating explosions and firing sounds.
£6.45

Sound Chip Data Manual (60 pages)

This contains a full description of the architecture \& operation of the chip, detailed advice on the interfacing to various microprocessors, and comprehensive explanations on the generation of music and sound effects.
£2.25 (no vat)

Sound Chip Interface Board

The board has been designed to interface between the Parallel Input/Output Port (PIO) of the Nascom and the sound chip. It is supplied ready-built and just plugs straight onto your PIO connector. Nascom 1 connectors available on request. Sound generation is illustrated in machine code \& Basic (chip not included)
£13.50

Sound Chip Demo Program (MC)

A brief summary of the main registers is given, together with a description of their functions. Thereafter, two separate modes may be selected. Direct mode allows values to be entered into the chip registers via the keyboard, making experimentation simple, thus leading to a rapid appreciation of the chip's potential. The second mode turns the keyboard into a 7 octave 'piano', displaying the notes being played as well as the values in the registers.
$£ 5.95$
*** NASCOM 1 - Cottis Blandford cassette interface for N2 format, reliability \& fast load £14.90

- 8K RAM required unless otherwise stated
- Please state if Nascom TAPE Basic required.

ALL PROGRAMS SUPPLIED ON CASSETTE IN CUTS/KANSAS CITY FORMAT

Please add 55p/order P \& P + VAT @ 15\%.
Large ($151 / 2 p$) Sae for FULL CATALOGUE.
PROGRAM POWER
5, Wensley Road
Leeds LS7 2LX.

CONTENTS

Editorial	Page 1
Washing Machine Contols Nascom	Page 2
Beyond the 64K Barrier	Page 8
Xtal Basic Extra	Page 12
Eprom Programmer/Checker/Reader	Page 18
Letters	Page 28
Micro-Market	Page 29
Nas-Sys Monitors	Page 30
Fruit Machine	Page 31

EDITORIAL

This is the first issue of Volume 2 of micropower and the start of our first full year of publication. There will be six issues this year at approximately 2 month intervals, so the next magazine will appear at the end of April.

When we started the magazine in August last year (what a long time ago that seems) we were unsure that there would be enough interest in a Nascom magazine to provide the necessary support, although we felt that was a tremendous fund of enthusiasm in the Nascom clubs and computer groups up and down the country.

It appears that the interest does exist - the magazine has sold well (we have had to have reprints of the early issues) and, even more important, articles have been sent in for publication. This does not mean that we have enough articles for the magazine - we are always pleased to receive more, so sit down NOW and write up your pet projects.

Remember that the composition of the magazine reflects the interests of the 'active' readers - that is, the readers who also contribute. If you feel that the magazine should contain articles on a certain topic you could write in and ask someone to write them, but a better way is to write a short article yourself. You have a head start, because all your readers will be Nascom enthusiasts; all you have to do is to communicate your particular interest.

Page 1

NASCOM CONTROLS WASHING MACHINE

by J. C. Lord

Some months ago I was given a Hoover Keymatic front loading washing machine which needed a new controller. The cost of such a controller being at that time about $£ 60$, I decided to have a go at controlling the machine from my Nascom. The project has proved successful, and I think that readers may be interested to see how the job was done using ten P.I.O. lines.

I removed from the washing machine the main motorised controller unit, the motor drive board, and all of the wiring. This left the two level switches (empty and full), the three solenoids (two for cold water, and one for hot), the pump and the main motors. I then built a board to interface between the Nascom and the various items on the washing machine.

Five of the P.I.O. lines are used as on/off outputs. The output system consists of a Darlington driver chip operating five transistorised relays. The Darlington driver acts as a buffer to provide 7 mA for the relays; the P.I.O. should not source or sink more than 2 mA . The relays switch 240 V . A.C. for the various machine components, as shown in figure 1. The 240 V . to microprocessor isolation in this circuit is provided by the relays. An alternative method would be to use optically isolated solid state relays.

Page 2

Three lines are used as Inputs. Two input signals come from the level switches which indicate when the drum is full and empty. As shown in figure 2, these switches are connected to +5 V . through 10 Kohm pull up resistors.

FIG 2

The third input is used by the processor to determine the speed of the drum for feedback purposes. A reflective optical switch points at the metal spokes of the pulley which turns the drum. When a spoke goes past the switch light is reflected and a ' 1 ' is generated on the P.I.0. input line, which is usually at ' 0 '. The circuit requires a transistor amplifier to step up the output from the receiver to TTL level for the P.I.0.

FIG 3

Page 3

By timing the interval between successive spokes, the speed of the drum can be found, and hence the required speed feedback is obtained. An alternative to this optical sensor would be a 5 V . proximity switch.

So far so good, now we come to the problem of controling the speed of the main motor. The circuit uses a thyristor - a device which can be made to pass current into the motor for part of the positive half of the A.C. wave. The earlier in the half wave it is switched on, the more current it will pass and the faster the motor will go (see figure 4).

Thus in order to control the speed a pulse has to be sent to the thyristor to switch it on at the required point in the positive half cycle. The circuit of figure 5 generates a reference pulse for the processor shortly after each positive-going zero crossing point.

FIG 5

Page 4
t15The P.I.0. line which receives the signal is an interrupt line, so that each time the zero crossing point signal is received the processor enters an interrupt service routine. In this routine the thyristor is fired after a delay calculated from the programmed speed requirement and the feedback speed. Figure 6 shows the firing circuit. Adequate suppression has to be included to prevent interference with other domestic equipment.

FIG 6

The 5 V . power supply for the circuit to the right of the isolation boundary must be derived from the 240 V . supply. If the 5 V . Nascom supply was used, there would be no isolation.

The program for controlling the operation of the system, which consists of sequencing for filling, emptying, pumping out and the motor control subroutine, was developed using the Zeap assembler. A flow chart for the system on which the program was based, is shown on the next page.

Page 6

Page 7

BEYOND THE 64K BARRIER

by Chris Blackmore

Anyone who has owned a Nascom for any great length of time will tell you that, unlike systems that arrive in ready-made plastic cases, Nascoms tend to expand almost indefinitely. The abilty to expand was designed into the system from the very beginning, and it shows. When you start out, you think that a 32K RAM board will never be too small. There is left over space in the memory map, and a great many of the expansion boards that are available are memory mapped, which means that they appear to the CPU to be memory, and they take up memory space. Then one day you upgrade your system to 64 K of RAM, or perhaps even more than that, because the Nascom will allow you to have enormous amounts of RAM (unlike the aforementioned plastic boxes...). Now your memory mapped sound generator board, programmable character generator, and home made digital clock card become nuisances, as they overlap some of your nice new memory.

So you have to find a way of preventing the waste of memory, and the Nascom provides it in the form of memory paging. Your main RAM board will be on page 0 , and all your memory mapped 'extras' (unless you have more than 64 K of them) will be on page 1,2 or 3 .

So this means that you will have to fit a paging circuit to each of these boards, doesn't it? No, it doesn't - one will do! There are some spare lines on the bus, called NDEF1 and NDEF2 in the Gemini 80 specification, and shown as 'reserved' in the Nasbus specification, which can be used in more or less any way you wish. I suggest that they should be used to carry the read and write signals to all boards that are on memory page 3 .

Only a simple modification is needed on each of these boards, instead of the quite complex task of adding a paging circuit to each of them. The single paging circuit can be built on a prototyping board, of which there tends to be at least one in any system that has reached this stage of development.

Modify each board that is to appear on page 3 as shown in diagram 2, or fit the board with equivalent switching if you want the board to be usable on systems without the page 3 signals, or with software that has not allowed for the use of paged addressing.

The circuit to provide the page 3 read and write signals is shown in diagram 1. It will not take up much space on the prototyping board, as it consists of very few components. It could even be fitted to the end of the mother board if you are that short of space. A header should be made up with links from pins 1 to 16 and 5 to 12 for page 3 operation; different header connections will allow for different page selections it is even possible to have the read signal on one page and the

Page 8

DIARAM 1: PAGING CRCUIT

| IC 1 | 74 | LS 273 | IC 4 | 74 LS OO | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IC | 2 | 74 | LS 30 | R1 | 150 Ohms |
| IC | 3 | 74 | LS 32 | R2 | 150 Ohms |

write signal on another, but even I don't know why anyone would want to do this! Two LEDs have been added for the benefit of those who, like me, feel that computers should have flashing lights on them - these are handy for checking that the circuit is actually operating, when your program to use it seems not to be working....

REFERENCES:

The full definition of the Gemini 80 bus can be found in INMC-80, No. 4, pages 24-30 The original Nasbus is defined in Nascom Document PF/007 Issue No. 1.

DIAGRAM 2: BOARD MODIFICATIONS

NASCOM USERS

Take a look at the NASCOM APPROVED HS.IN STORAGE SYSTEM, Whers else can you get featurer like thest

A full on tcreen instant display of the catalogua
Auto vertificition of aoch file as it is witten.
CRC error checking.
Link selectable 2 Mh z or 4 Mhz option.
Fast data transfer rate of 6000 bps
Powerad from NASBUS.
$8^{-1 /}$ sq NASBUS compatible PCB.
Far more reliable than any floppy disik system.
112 K on-line storage with 2 drive syitem.
The HS-IN has a Command Set which makes it a floppy-disk +look-alike't, It can load an BK program in under 11 seconds and cin store up to 56 K (28 files) on each side of tape. Why spend £700 on a floppy disk systern when the less expensive HS-IN system has a cammand set like this...

BAIDGE THE GAP BETWEEN EXPENSIVE FLOPPY DISK SYSTEMS AND UNRELIABLE CASSETTES.

B - Write a Baric fila
C - Instant display of eatalogue
D - Delete file.
1 - Jump to Batic.
N - Jump to NASSYS.
Q - Warm start to NASPEN taxt edifor
R - Raad a file.
T - Tranrfer file to another drive.
W - Write a file.
X - Exit and rewind calsettes.
Z - Warm start to Batic.
This Mini Casurtte Storage Systern is tuchno. logically far anead of anyzthing like it on the market and is extremely raliable into the bargain AND THE COST?
Single Drive Systam buit and tested E199
Doubin Drive System built and tested $\quad \mathbf{E 2 7 9}$
Carriage E 3.50 .

OFFETNOI

ALL RAMAB boards supolieq umtil Aatil 30th mome with an EXTRA 32K FREE on towd

OFFER NOZ

 ONLY £380 + YAT. SAVE E37.SO SEE OFFER 1 कनिसीNO
NASCOM 2 bulls, 4aK AAMA B board bualt. 3A P5U. HSIN SINGLE DAIVE SYSTEM
ONL, Y E530 + VAT, SAVE C86.50 SEE OFFER I
ALL OFFERS END APAIL 30 TH 1882

DFFRBNO4

NASCOM 2 bullt 48K RAM E boand built, 3A PSU,
HS aN aingle drive tyatem, EPSON MXBOFT. 1. NASPEN * ALL CABLES ONLY E900 + VAT SAVE E125,SO BEEOFFEA 1

OFPERNOS

 Cora lival
OHLY E540 - VAT, SAVE CES SEE DFFEA 1

CFFER MOT

SHAFP MZBOK WITH SUPEA GAAPMICS +5 GAMES. EPSON MKAOFT-1 WITH PAPEA
ONLY EB25 + VAT IAVIT C22E

MICRO-SPARES JOIN MICROVALUE GROUP

MICRO-spARES have now beedme the MICROVALUE GROUP mamber supplying Scotland and now add supar naw produets like the Gomini. Therbsi Epion to the MICAO-GPARES range.

QUALITY MEMORIES

AT BRICES THAT CANNOT AE 日GATEN IN TAEUK MCAO-SPARES an supply tVese meruries in Nusntitien thom t
 ihipdet same dey.
 Memories supplied are gocet quaitry but ahould you haves
 - witheur guetrion.

Thousandi of resefories heve elrnech Dest suebied na Monuracturent Eomputer Thadera, Davermimers Bodien eid l relividuais ail aver the UK, arat the gonlinine, If you ere bupbug in arge quinitiss

21146	Suitabie fier Acorn Astru
2114N	1200 na 直300ns!
4115	$\begin{aligned} & 1240 \mathrm{na!} \\ & 1200 \mathrm{n}! \\ & 1150 \mathrm{e}! \end{aligned}$
2709	1450n7

EDINBUAGH
SUPPLIENS TO TAADEI LOCAL QOVEMNATENT DUCATION $1 \frac{49}{84 p} \quad 30-243$
 $\begin{array}{ll}63 \mathrm{p} & 63 \mathrm{~m} \\ \text { 64p } & \text { 63s }\end{array}$ $\begin{array}{ll}719 & 775 \\ 40 & 174 p\end{array}$ $\begin{array}{ll}1.40 p & 174 p \\ 208 & 137\end{array}$

Buy anEPSON PRINTER

 Get a COMPUTERYES - YOU WILL RECEIVE A FREE SINCLAIR 2×81 WITH EVERYONE O THE MODELS BELOW EVEN THOUGH THE PRICE IS GOOD - BUT HURAY THIS OFFER LASTS AS LONG AS THE $Z \times 81$'s ARE IN STOCK
EPSON MXBOT E359 + VAT
EPSON MX80FT1 E 199 + VAT EPSON MXBOFT2 inw typel $\mathbf{E 4 6 5}+$ VAT EPSON MX100 8575 + VAT

BAYMENT AND DELIVEAY

 anfars try sirosyement

COMPUTEAE PERIRNEAAL5 COMPGNE*TE B-NATIONWIDE
 Te 031. 1175014

arcap	COMPUTEAS
	PERIMEAALS
M3A	СОММОसЕНTE
	S-NATIONWIDE

by David Elliott
Here are six more commands tor Crystal Basic 2.2. OLD recovers a program which has been 'exterminated' by a NEW or a cold start. STRING\$(nn,cc) creates a string of nn characters with ASCII code cc. LOWER\$(..) and UPPER\$(..) convert a given string to lower and upper case respectively, while REVERSE\$(..) changes the case of the characters in a string. Finally, EVAL(...) returns the value of a given string. The assembler listing of the commands is followed by the code to be entered using the loader program described in the last issue.

1070 1075 1080 1085 1090 1100

2D7B	E1	1090
2D7C	23	1100
2D7D	CD8B1B	1110

$\begin{array}{lll}\text { 2D78 } & \text { CD8B1B } & 110 \\ \text { CD5115 } & 1120\end{array}$
2D83 $29 \quad 1130$
$2 D 84$ E5 1140
2 D85 CD6A21 1150
2D88 2B 1160
2D89 2B 1170
2D8A 2B 1180
2D8B $46 \quad 1190$

2D8C EB 1200
1210
1220
2D8D E5 1230
2D8E E5 1240
2D8F 781250
2D90 CDA81F 1260
2 C 93 C1 1270
2D94 E1 1280

2D95 3AFE2D 1290
2D98 FE52 1300
2D9A 28241310

2D9C FE4C 1330
2DA0 7E 1340
2DA1 FE41 1350
2DA3 38131360
2DA5 FE5B 1370
2DA7 300F 1380
2DA9 C620 1390
2DAB 180B 1400
2DAD 7E 1410

2DAE FE61 1420
2DB0 $3806 \quad 1430$
2DB2 FE7B 1440
30021450
2DB6 D620 1460
2DB8 121470
2DB9 131480
2DBA 231490
2DBB 10D8 1500

2DBD C3D91F 1540
2DC0 48 1550
2DC1 $0600 \quad 1560$
2DC3 091570
2DC4 2B 1580
2DC5 $41 \quad 1590$
2DC6 7E 1600
2DC7 121610
2DC8 131620
2DC9 2B 1630

2DCA 10FA 1640
2DCC C3D91F 1650

	LF (CONV), A	; REVERSE
; CONVERT STRING		
CNVERT		
	POP HL INV HL	
	CALL EXPR	; GET STRING
	CALL TSTCHR	; TEST FOR
	DEFB ${ }^{\text {c }}$; COSING BRACKET
	PUSH HL	
	CALL ASCO	; GET STRING ADD.
	DEC HL	; AND LENGTH
	DEC HL	
	DEC HL	
	LD B, (HL)	; B=STRING LENGTH
	EX DE, HL	; HLSTRING ADDRESS
; GOT STRING ADDRESS		
	PUSH HL	; SAVE IT
	PUSH HL	; SAVE IT
	LD A, B	; SET A TO LENGTH
	CALL ASNSTR	; CREATE NEW STRING
	POP BC	
	POP HL	
CNV1	LD A, (CONV)	; GET FLAG
	CP "R	; REVERSE?
	JR Z, REVSTR	; IF SO, JUMP
	JR NZ, CVNU	; IF NOT, UPPEROOD
	LD A, (HL)	
	CP "A	; BEFORE "A"?
	JR C, CNV2	; IF SO, LEAVE
	CP " $\mathrm{C}+1$; AFTER "Z"?
	JR NC, CNV2	; IF SO, LEAVE
	ADD A, 20H	; CONVERT
	JR CNV2	
CNVU	LD A, (HL)	
	CP "a	; BEFORE "a"?
	JR C, CNV2	; IF SO, LEAVE
	CP " $\mathrm{z}+1$; AFTER "z"? 2DB4
	JR NC, CNV2	; IF SO, LEAVE
	SUB 20H	; CONVERT
CNV2	LD (DE), A	; SAVE CHARACTER
	INC DE	
	INC HL	
	DJNZ CNV1	
	JP STREND	; BACK TO BASIC
REVSTR	LD C, B	; SET BC TO LENGTH
	LD B, 0	
	ADD HL, BC	; ADD TO START
	DEC HL	; TO GET END
	LD B, C	; SET B TO LENGTH
REV1	LD A, (HL)	; COPY CHARACTER
	LD (DE), A	
	INC DE	; ALTER POINTERS
	DEC HL	
	DJNZ REV1	; LOOP
	JP STREND	; BACK TO BASIC

		1670	; @@@@@@@@@@@@@@@@@@@@@@@		
		1680	; @@	EVALUATEAST	NG @@
		1690	; @@@@@@@@@@@@@@@@@@@@@@@		
		1700			
2DCF	E1	1710	EVAL	POP HL	
2DD0	23	1720		INC HL	
2DD1	CD8B1B	1730		CALL EXPR	; GET STRING
2DD4	E5	1740		PUSH HL	
2DD5	CD6A21	1750		CALL ASCO	; GET ADDRESS IN DE
2DD8	2B	1760		DEC HL	; FIND LENGTH
2DD9	2B	1770		DEC HL	
2DDA	2B	1780		DEC HL	
2DDB	7E	1790		LD A, (HL)	; GET LENGTH IN A
2DDC	FE5A	1800		CP 90	; IS IT TOO LONG?
2DDE	3805	1810		JR C, EVAL2	; IF NO, JUMP
2DE0	1E0F	1820		LD E, 15	; IF YES, WRITE
2DE2	C31913	1830		JP ERROR	; ERROR MESSAGE
2DE5	4F	1840	EVAL2	LD C, A	
2DE6	0600	1850		LD B, 0	
2DE8	EB	1860		EX DE, HL	
2DE9	11D50C	1870		LD DE, BUFFER	
2DEC	EDB0	1880		LDIR	
2DEE	23	1890		INC HL	
2DEF	3600	1900		LD (HL), 0	
2DF1	21D50C	1910		LD HL, BUFFER	; COMPRESS OVER
2DF4	CD4914	1920		CALL CMPRSS	; ITSELF
2DF7	23	1930		INC HL	
2DF8	CD771B	1940		CALL EXNMCK	; EVALUATE EXPR.
2DFB	C3AA2B	1950		JP FNEND	; BACK TO BASIC
2DFE	00	1960	CONV	DEFS 1	; CONVERSION FLAG
		1965			
		1970	; ROUTINES IN CRYSTAL BASIC		
		1980			
2DFE	154C	1990	TSTCOM	EQU 154CH	; TEST FOR COMMA
2DFE	2250	2000	IN255	EQU 2250H	; GET NUMBER 0 - 255
2DFE	1FAB	2010	ASNSTR	EQU 1FABH	; CREATE NEW STRING
2DFE	1FD9	2020	STREND	EQU 1FD9H	; RETURN WITH RESULT
2DFE	1551	2030	TSTCHR	EQU 1551H	; TEST FOR NEXT BYTE
2DFE	215B	2040	LEN1	EQU 215BH	; GET STRING LENGTH
2DFE	1B8B	2050	EXPR	EQU 1B8BH	; EVALUATE EXPRESSION
2DFE	216A	2060	ASCO	EQU 216AH	; GET ADDRESS \& LENGTH
2DFE	1449	2070	CMPRSS	EQU 1449H	; COMPRESS TO BUFFER
2DFE	2BAA	2080	FNEND	EQU 2BAAH	; RETURN FROM FUNCTION
2DFE	1 B77	2090	EXNMCK	EQU 1B77H	; EVALUATE NUMERIC EXP.
2DFE	0CD5	2100	BUFFER	EQU 0CD5H	; BASIC INPUT BUFFER
2DFE	1319	2110	ERROR	EQU 1319H	; PRINT ERROR MESSAGE

These routines should can be entered into the crystal basic interpreter in the normal way, or they can be added by means of the loader program given in the last issue. The code to be entered when using this program is given below.

NAME:OLD
0000 FD $2 A \quad 83 \quad 12$ FD E5 D

000E	FD	19	FD	BE	00	28	04	FD	23	18	F7	78	B7	20
001C	OD	06	01	FD	23	FD	E5	D1	DD	73	00	D	72	01
002A	AF	FD	BE	01	20	E5	FD	BE	02	20	E0	11	03	00
0038	FD	19	FD	22	B7	0C	FD	22	BB	OC	C9			
NAME:STRING\$(
0000	E1	23	CD	50	22	F5	CD	4C	15	CD	50	22	F5	CD
000E	51	15	29	F1	47	F1	E5	4F	79	C5	CD	AB	1F	C1
001C	EB	70	23	OD	20	FB	C22		1F					
NAME:LOWER\$(
0000	3E	4C	32	+009		18	OC							
NAME:UPPER\$														
0000	3E	55	32	+00		18	05							
NAME:REVERSS\$(
0000	3E	52	32	+008		E1	23	CD	8B	1B	CD	51	15	29
000E	E5	CD	6A	21	2B	2B	2B	46	EB	E5	C5	78	CD	$A B$
001C	1F	C1	E1	3A	+0088		FE	52	28	24	FE	4C	20	OD
002A	7E	FE	41	38	13	FE	5B	30	0F	C6	20	18	0B	7E
003B	FE	61	38	06	FE	7B	30	02	D6	20	12	13	23	10
0046	D8	C3	D9	1F	48	06	00	09	2B	41	7E	12	13	2B
0054	10	FA	C3	D9	1F	.								
NAME: EVAL(
0000	E1	23	CD	8B	1B	E5	CD	67	21	2B	2B	2B	7E	FE
000E	5A	38	05	1E	0F	C3	19	13	4F	06	00	EB	11	D5
001C	0C	ED	B0	23	36	00	21	D5	OC	CD	49	14	23	CD
000A	77	1B	C3	AA	2B	4C	00	00	00					

In the last issue a section of code was omitted from the command loader listing on page 13. The following text should be added between line 850 and line 1020

4EA5	FD7500	0850	LD (IY), L
4EA8	FD7401	0860	LD (IY+1),H
4EAB	FD23	0870	
4EAD	FD23	0880	
4EAF	18D9	0890	
4EB1	CDCD4E	0900	IN2
4EB4	FD7100	0910	
4EB7	FD23	0920	JR IN1
4EB9	18CF	0930	CALL NUM8 (IY), C
4EBB	E5	0940	NUM6
4EBC	DF64	0950	INC IY
4EBE	E1	0960	JR IN1
4EBF	381C	0970	SCAL NUM
4EC1	ED4B210C	0980	POP HL
4EC5	3A200C	0990	JR C, ERROR
4EC8	FE04	1000	LD BC, (NUMV)
4ECA	2011	1010	LD A, (NUMV)

FEATURES:
EFFECTIVELY REPLACES EPROMS.
Does away with the Incuaventience of EPROM programming and the compromise of assigning valuable address space to ROM.
ON BOAITD RECHARGEABLE NI-Cad BATTFRY RETAINS MEMORY FOR OVER 1000 Hra
Buttery in automatically charged during power -up period n HIGH SPEED OPERATION up to 6 MHz WITHOUT WAIT STATES.
FULLY NASBUS' and GEMINL-w BUS COMPATHELE PAGE MODE SCHEME SUPPORTED.
The board can he conflyured to provide one alk byte page or twa completely independent loki byte pages.
Complete pages of 64 k bytes are-aimply implernented by adding more boards on to the bus.
SOFTWARE and or HARDWARE READIWRITE PROTECTION
4K blocks in either page are link selectable to be aligned on any 4 K boundary.
FULLY BUFFERED ADDRESS, DATA AND CONTROL SIGNALS
MEMORY LC. SOCKETS ARE LINK SELECTABLE TO
SUPPORT ANY 24 PIN 2 i byte MEMORY LC.
Thus the hoard can support up to 3 kk bytes of any mixture of emos, mos rams or $275 / 52515$ eproms.
All options are link selectable using wire links plugged into gold-plnted socket pint, avoiding the risk of dames and the inconvenience caused by soldering links directly to the board. The printed circuit bourd is manufactured to the high quality demanded by industrial users and conforms to B S. 8000
The board comes assembled and tested and is supplied with n minimum of 2 k byte of low-power emos ram. Fully documented.

AVAILABLE NOWT
PRICES:
 Pleat add ISp PgP and VAT 15%

Processes Processes an moon una. cumpmoe under

Meas supply me with the followini:
Mire
$\begin{array}{ll}\text { Board with } 16 k b y t e s & 680.00 \\ \text { Rom i20.00 }\end{array}$
Board with 32le bytes \$170.00
Bare fioards (circuit diagram-supplied) 837.50

EPROM PROGRAMMER/CHECKER/READER

Part 2

By C. Bowden

The previous article described an EPROM programmer that I recently designed and built. The present article gives the circuit diagrams of the programmer and a suitable power supply, together with a Veroboard layout for the programmer and the source code of the software necessary for its operation.

Fig. 0 PROGRAMMER POWER SUPPLY

Fig. 12708 PROGRAMMER CIRCUIT

NOTES: 1) PORT A OF PIO USED FOR DATA, PORT B FOR CONTROL
2) DECOUPLING CAPACITORS 0.01 - 0.1 uf SHOULD BE USED ON EACH IC (AS ON IC 3)
3) THE PIN NUMBERS SHOWN REFER TO THE NASCOM 2 26-WAY PIO CONNECTOR
4) OBSERVE CMOS HANDLING PRECAUTIONS WITH ICs 1 AND 3, AND THE EPROMS
5) IF POSSIBLE USE ZERO INSERTION FORCE SOCKETS FOR THE EPROMS
6) UNMARKED PULL UP RESISTORS CAN BE IN THE RANGE 4.7K TO 10K

Fig. 2 A SUITABLE VERO BOARD LAYOUT
NOTES: 1) THE LAYOUT IS SHOWN FROM THE COPPER SIDE. ALL COMPONENTS EXCEPT THE LINKS AND 2 DIODES NOTED BELOW ARE MOUNTED ON THE OTHER SIDE OF THE BOARD
2) IF ZERO INSERTION FORCE SOCKETS ARE USED MOUNT ALL LINKS NEAR THEM FIRST AS THEY WILL COVER THE HOLES
3) \times SIGNIFIES A TRACK CUT THROUGH, • IS A SOLDERED CONNECTION, LINES SHOWN AS \bullet ARE TINNED COPPER LINKS, THREE OF WHICH ARE TAPPED PART WAY ALONG THEIR LENGTH (B, C AND D)
4) DECOUPLING CAPACITORS ARE NOT SHOWN, BUT 0.01 TO $0.1 \mu \mathrm{~F}$ ARE RECOMMENDED (1 PER IC)
5) THE FOLLOWING INSULATED WIRE LINKS, MOUNTED ON THE COPPER SIDE OF THE BOARD, ARE NOT SHOWN:

IC1 PIN 15 TO 10KOhm A IC3 PIN 9 TO 2708 PIN 8
TR5 COLL. TO 2716 PIN 20 IC3 PIN 13 TO 2708 PIN 1
IC3 PIN 15 TO 2716 PIN 19
CONNECT THE 2708 PINS 1,4,5,6,7,8,9, 10, 11, 22 \& 23
TO THE CORRESPONDING PINS ON THE 2716 SOCKET
6) A 1 N4148 DIODE IS CONNECTED FROM +5 V TO PIN 21, 2716 (CATHODE TO PIN21) AND ANOTHER 1 N4148 FROM PIN 21, 2716 TO PIN 18, 2708 (CATHODE TO PIN 21)

Page 20

21:	;	EQU OAH	
$23:$	CR	EQU ODH	
24.	KBD	EQU 62H	
25:	B2HEX	EQU 68H	
26:	CRLF	EQU 6AH	
27:	TDEL	EQU 5DH	; ONE SECOND DELAY
28:	SRLX	EQU 6FH	
29:	SCAL	EQU 0DFH	
30:	ADATA	EQU 14H	
31:	ACTRL	EQU 16H	
32:	BDATA	EQU 15H	
$33:$	BCTRL	EQU 17H	
34:	HSHAKE	EQU 00H	
35:	;		
36:		ASEG	
37:		. 280	
38:	;		
39:		ORG 100H	
40 :		.PHASE OAOOOH	
41:	;		
42:			
43 :	START:	LD HL, TEXT1	; TITLE TO TOP LINE
44.		LD DE, OBCBH	
45:		LD BC, 10H	
46:		LDIR	
47:		CALL STPIO1	; PORT A TO I/P, B TO O/P
48:		CALL RESET1	; RESET COUNTER, CHIP OFF
49:		JR RESTR1	
$50:$			
51:	RESTRT:	CALL CLRCRT	; RETURN HERE AFTER A ROUTINE
$52:$	REMOVE	LD HL, TEXT3	; MESSAGE ON EPROM REMOVAL
$53:$		LD HL, OAOBH	
54:		LD BC, 41H	
55:		LDIR	
56:		LD HL, TXT17A	; "SAME EPROM - ?"
57:		LD DE, 0B0BH	
58:		LD BC, 17	
59:		LDIR	
60:	ANSWER:	DEFB SCAL, KBD	; SCAL KEYBOARD FOR REPLY
61:	ANS1:	JR NC, ANSWER	
$62:$		CP "Y"	
$63:$		JR Z, PROMPT	
64:		CP "N"	
65:		JR NZ, ANSWER	; TRY AGAIN IF NOT Y OR N
66:		JP RESTR2	
67:			
68:	RESTR1:	CALL CLRCRT	; CAUTION MESSAGES FOR 1ST RUN
69:		LD HL, TEXT20	
70:		LD DE, 090BH	
71:		LD BC, 34	
72:		LDIR	
$73:$		LD HL, TEXT21	
74:		LD HL, 098BH	
75:		LD BC, 38	
76:		LDIR	
77:		DEFB SCAL, TDEL	; WAIT APPROXIMATELY 2 SECONDS
78:		DEFB SCAL, TDEL	

RESTR2: CLRTYP:	CALL CLRCRT	; CLEAR TYPE NUMBER
	LD B, 16	; TYPE ADDRESS ON SCREEN
	LD HL, 0BE8H	; SPACE CHARACTER
	LD A, ""	
CLRT1:	LD (HL), A	
	INC HL	
	DJNZ CLRT1	
KEYC:	LD HL, TEXT3	; EPROM HANDLING MESSAGE
	LD DE, OAOBH	
	LD BC, 41	
	LDIR	
	LD HL, TEXT4	; PROMPT FOR KEY "C"
	LD DE, OBOBH	
	LD BC, 19	
	LDIR	
SCAN:	DEFB SCAL, KBD	; GET INPUT
	JR C, SCAN1	
	JR SCAN	
SCAN1:	CP "C"	
	JR NZ, SCAN	; LOOP UNTIL "C" IS PRESSED
ALLOK:	CALL CLRCRT	
	LD HL, TEXT1A	; "KEY A---FOR 2708"
	LD DE, 090BH	
	LD BC, 33	
	LDIR	
	LD HL, TEXT1B	; "KEY B-------"
	LD DE, 0991H	
	LD BC, 27	
	LDIR	
KEY:	DEFB SCAL, KBD	; GET INPUT
	JR C, KEY1	
	JR KEY	
KEY1:	PUSH AF	; SAVE KEY
	CALL CLRCRT	; CLEAR SCREEN
	LD HL, TEXT11	; "KEY ?-----Y/N"
	LD DE, 090BH	
	LD BC, 27	
	LDIR	
	POP AF	
	LD HL, 090FH	; SCREEN ADDRESS FOR KEY
	LD (HL), A	; PRINT IT
	EX AF, AF'	; SAVE IT AGAIN
KEY2:	DEFB SCAL, KBD	; GET KEY AGAIN
	JR NC, KEY2	
	CP "Y"	
	JR Z, TYPE	
	CP "N"	
	JR Z, ALLOK	
	JR KEY2	; TRY AGAIN IF NOT Y OR N
TYPE:	EX AF, AF'	; GET ORIGINAL ENTRY BACK
	CP "A"	
	JRZ, TYP1K	; 1K EPROM
	CP "B"	
	JR Z, TYP2K	; 2K EPROM
	CALL CLRCRT	

$136:$	TYPERR:	LD HL, TEXT12 LD DE 090BH	; TYPE ---- A OR B"
138:		LD BC, 29	
139:		LDIR	
140:		DEFB SCAL, TDEL	; WAIT APPROXIMATELY 2 SECONDS
141:		DEFB SCAL, TDEL	
142:		JP ALLOK	
143:	TYP1K:	LD A, 4	; FLAG FOR 2708
144:		LD (ROMFLG), A)	
145:		LD HL, TXT13A	; TYPE TO TOPLINE
146:		LD DE, 0BE8H	
147:		LD BC, 16	
148:		LDIR	
149:		JR PROMPT 150:	; FLAG FOR 2K EPROM
151:		LD (ROMFLG), A	
152:		LD HL, TXT13B	; TYPE TO TOPLINE
153:		LD DE, 0BE8H	
154:		LD BC, 16	
155:		LDIR	
156:			
157:	PROMPT:	CALL CLRCRT	
158:		LD HL, TEXT2	; PROMPT FOR KEY P----.
159:		LD DE, 094BH	
160:		LD BC, 25	
161:		LDIR	
162:		LD HL, TEXT2A	; KEY C----
163:		LD DE, 09D2H	
164:		LD BC, 1EH	
165:		LDIR	
166:		LD HL, TEXT2B	; KEY T----
167:		LD DE, 0AD2H	
168:		LD BC, 1FH	
169:		LDIR	
170:		LD HL, TEXT2C	KEY E----
171:		LD DE, 0AD2H	
172:		LD BC, 20H	
173:		LDIR	
174:		LD HL, TEXT2D	; KEY D----
175:		LD DE, 0B52H	
176:		LD BC, 1AH	
177:		LDIR	
178:			
179:	OPTION:	XOR A	; WHICH ROUTINE
180:		DEFB SCAL, KBD	; SEE IF KEY PRESSED
181:		JR C, WHICH	; IF SO, JUMP TO WHICH
182:		JR OPTION	; ELSE KEEP LOOKING FOR KEY
183:	WHICH:	EX AF, AF'	; SAVE KEY
184:		CALL CLRCRT	
185:		LD HL, TEXT11	; KEY ? ---Y/N?
186:		LD DE, 090BH	
187:		LD BC, 27	
188:		LDIR	
189:		LD HL, 090FH	SCREEN ADDRESS
190:		EX AF, AF'	RECOVER A
191:		LD (HL), A	PRINT IT
192:		EX AF, AF'	RESAVE IT
193:	WH1:	DEFB SCAL, KBD	
194:		JR NC, WH1	

Page 24

INC HL
INC DE JR PROGR2 ; BACK, SEE IF 1K DONE POP BC ; 1K DONE, GET CYCLES LD A, B ; PRINT CYCLES LEFT
DEC A ; ADJUST COUNT
DEFB SCAL, B2HEX ; PUT ON SCREEN DJNZ PROG1 ; IF NOT 104, GO TO PROGR1
CALL STPIO2 ; PORT A TO I/P
CALL RESET1 ; 12V OFF, 5 V ENABLED, CHIPS
DEFB SCAL, TDEL ; TWO SECONDS DELAY DEFB SCAL, TDEL
CALL MESS 19
JP RESTRT ; BACK TO START
;
; * ROUTINE FOR 2516/2716 EPROMS

;

PR2716:	LD DE, 0	BYTE COUNTER
	JR PRINTD	
PR27A:	LD A, (ROMFLG)	FLAG EQUALS 8 FOR 2K ROM
	CP D	800H BYTES DONE?
	JR Z, PROGR4	IF SO, EXIT VIA PROGR4
	LD A, 3	;TURN ON 26V AND $\overline{O E}$
	OUT (BDATA), A	
	LD B, 10H	; SHORT DELAY
WAIT:	DJNZ WAIT	
	LD A, (HL)	; DATA
	OUT (ADATA), A	
	LD B, 10H	
WAIT1:	DJNZ WAIT1	; SHORT DELAY
	LD A, 13H	
	OUT (ADATA), A	; TURN ON 26V, $\overline{O E}$, PGM
	LD BC, 1D00H	COUNT FOR 50 mSEC .
PR27C:	DEC BC	
	LD A, B	
	OR C	
	JR NZ, PR27C	
	LD A, 3	PGM PULSE OFF
	OUT (BDATA) , A	
	LD B, 10H WAIT2	
WAIT2:	DJNZ WAIT2	SHORT DELAY
	LD A, 1	
	OUT (BDATA), 1	; TURN OE OFF
	LD B, 10H	
WAIT3:	DJNZ WAIT3	; SHORT DELAY
	LD A, 5	
	OUT (BDATA), A	; 26V, INCREMENT COUNTER
	LD B, 10H	
WAIT4:	DJNZ WAIT4	; SHORT DELAY
	LD A, 1	
	OUT (BDATA), A	; INCREMENT PULSE OFF
	INC HL	
	INC DE	
	LD A, E	
	CP 0	

Page 25

The remainder of the listing will be published in the next issue. If you don't wish to wait that long, or you can't be bothered to type it all in - after all the source code is 18 K long - I will provide copies of the source and object codes. Just send me a cassette, or a disc with approximately 26 K free, and $£ 1$ to cover copying and postage. Source can be supplied in Zeap compatible form or Macro 80 form. Please state which you require. Also please state the disc format required; I can supply single or double density to suit either CP/M or Polydos, for Nascom/Gemini G805/G809
C. Bowden, 'Tregwyn', Stithians, Truro, Cornwall

ALTERNATIVE GRAPHICS EPROMS

Two specially designed sets of pixels for Nasom-type minicomputers. 8×16 format programmed EPROMS giving an enhanced display when substituted for the Nascom 2 ROM.

EPROM No. 1 REVERSE (Black on white ground) NUMERALS \& ALPHABET (Upper Case)
HIGH RESOLUTION Horizontal \& Vertical lines
BAR GRAPH FACILITIES Solid, chequered or lines to plot high resolution horizontal or vertical bargraphs (BASIC software listings supplied)

EPROM No. 2 GAMES SHAPES:

Both EPROMS are ideal for use with a graphics ROM adaptor. Price: £13.50 per EPROM (inclusive) S.A.E. for details.

UNICORN AND MORTAR, 11, FREETH ROAD, BROWNHILLS, WALSALL.

FULLY BUILTAND TESTED SYSTEMS

NASCOM 2
16 K in Microtype Case,Graphics and Sound

48 K in Kenilworth Case.
Nas-Sys 3 and Graphics Sound

NASCOM 3

8 K in Nascom Case, Graphics Nas-Sys 3
16 K in Nascom Case, Graphics, Nas-Sys 3

PRINTERS Epson MX80 F/T dot matrix printer,
Olympia daisy wheel printers-RO or KSR
Telephone for further information and priceti.

NASCOM

NASDOS
Disc Operating System

CP/M 2.2
Disc Operating System

SHARP MZ80B Now on demonstration
with WORDSTAR and CALCSTAR.
AN the above prices exciude VAT

LETTERS

Dear Sir,
Re the "Nascom 1 Keyboard Upgrade", an interesting article currently under construction, readers may be interested to know that Licon Keys (the later angled variety) are available from Target Electronics, 16, Cherry Lane, Bristol, BS1 3NG. Prices in December 1981 were; Keyswitch 65p each., Keytop 17p each.

My only criticism of the magazine "so far" is that the density of the type varies considerably, some is difficult to read.

On expanding my Nascom 1 to include a 64K RAM card, EPROM expansion card with 8K Basic running under Nasbug T4 I encountered a hardware problem. Executing FOR loops with large values, i.e., greater than 1000, produced "crashes"; Basic programs occasionally jump to machine code, and vice versa. After considerable difficulty I tried connecting a thick lead (20 A current capability) directly from the $\mathrm{Z80}$ earth pin to 0 V on the Buffer board. To date this has cured all programming problems.
P. E. Acton, Leicester

Dear Sir,
In the program "Rings of Hanoi" on p. 31 of the December issue of Micropower, I think the following corrections are needed:-
$220 \mathrm{~A}(\mathrm{I}, 0)=\mathrm{I}: \mathrm{A}(\mathrm{I}, 1)=0: \mathrm{A}(\mathrm{I}, 2)=0$
290 SCREEN 1,1: PRINT : SCREEN 6,15
400 GOSUB 920: SCREEN 2,2:PRINT: SCREEN 2,2: PRINT "MOVE FROM";
410 INPUT IN\$
420 GOSUB 1300:TF=IN:IF TF < 0 THEN 400
440 SCREEN 1,1:PRINT:SCREEN1,1
470 GOSUB 920:SCREEN 2,2:PRINT: SCREEN 2,2: PRINT "TO PILE";
F. Johnson, Stockport

Dear Sir,
The content of Micropower is quite good and the technical level is about right, I think the hardware/software mix is probably O.K., although I would personally like to see more programs in each issue.

I have managed to make the "Snowdinger" mod work at 2 Mhz and 4 Mhz , although I have had to delay the WAIT signal by two gate propagations in order to get the system to operate at 2 Mhz . The improvement in screen quality is excellent.

The dual monitor (2716 for 2708s) was nearly correct, though it is not permissible to wire 'or' the two outputs of a 74LS139 - it is necessary to combine the signals correctly by using, for example, a 7402.
D. R. Piercy, Wareham

Dear Editor,
The contents of the magazine seem quite well balanced - there must be something in each issue of interest to every Nascom user. I would like to see some explanation of essential parts of programmes, i.e. brief notes on those parts of software on which the operation depends. For example, a note on how the highres graph plotting software works would have been interesting. I would be particularly interested in articles on fault finding techniques for or with the Nascom. If anyone knows of a cheap and reliable MODEM design then the details would be most welcome.

The Lincoln computer club now meets on the 1st and 3rd Wednesday of each month at the Hare and Hounds, 330, High Street, Lincoln, starting at 19.30. Further details from:

John Clifford, Lincoln (0522) 21607

> MICRO=MARKET
> Small non-commercial advertisments, $£ 2$ per ad.

FOR SALE Two ICL Termiprinter units Type 7572
Both fully over hauled and in full working order. 118 char./line. Prints at 60 c.p.s. Both fitted with Horizontal and Vertical Tab facilities and Form Feed mechanism. RS-232 Serial interface will fit directly to Nascom 1 or 2. Baud rate 110, 300, 1200 and others. Tractor and friction feed. Service documentation available. Software supplied for Nas-Sys 1 or 3 . Fully gauranteed for 3 months.
Offers over £200 for each
IBM Selectric Golfball printer with Acculab Professional interface unit in full working condition. Parallel interface fits directly to Nascom PIO. Selection of Golfball typeheads available. Tractor and friction feed. Software Subroutine supplied for Nas-Sys 1 or 3 . Best offer over $£ 300$ for the pair.

For further information on any of the above, phone Wolverhampton (0902) 893037. 10 a.m. to 10 p.m. Prefer buyer to colect and see full demonstration, but carriage could be arranged.

FOR SALE Solenoid Operated Cassette Transports.
These machines may be put into wind, rewind, stop and play with signals from the PIO, buffered with reed ralays or open-collector gates. Record tabs, cassette present and tape end can similarly be fed back to the PIO.

It takes a little imagination and a bit of programming to turn it into an automatic program and data store, putting back the fateful day when you have to buy discs. All this for only £25 + carriage. More details from Pat Crabb, Holmfirth (0484 489) 5263

FOR SALE	RAM A card with 8K	£45 o.n.o.
	RAM B card with 16 K	£70 o.n.o.
	Both in full working order	C. Bowden

Tel. 0209860480 (Evenings) 0209712780 (Daytime)

THE NAS-SYS MONITORS

By J. Haigh

THE EXTERNAL COMMAND X xx

When this command is executed, the low byte of the argument after the X is stored at £0C28, and the pointers to the input and output command tables at £0C75 and £0C73 are reset. Input now scans a routine called XKBD (SCAL £74) and then scans the 'normal' Nascom keyboard routine, which in the case of Nas-Sys 1 is SCAL £61 while Nas-Sys 3 uses the Repeat Keyboard routine SCAL £7D. Output sends data to an external output routine XOUT (SCAL £6E), then to the user output (SCAL £75) and finally to the CRT (SCAL £65).

The external keyboard routine scans the serial input port. If no input is received it returns from this routine and scans the Nascom keyboard in the normal way - any options set under the X command have no effect on the Nascom keyboard, so to the user the operation of the system is unchanged.

If an input is received from the serial input port, bit 7 of the input byte is first set to zero. This is done because many systems use the most significant bit for parity checking to eliminate errors; the number of ones in the lower seven bits is counted and the value of bit 7 is then adjusted so that the number of ones in the byte is either always even (even parity) or always odd (guess what that's called). The Nascom may have to communicate with systems which use either (or no) system of parity checking, and it does this the easy way by merely stripping off the parity bit and ignoring it,

The value of the byte entered as argument to the X command is now used to control various options available, If bit 5 of the byte was zero, the input routine ' echos' each byte receidefrom the external keyboard, that is, it transmits it back to the sender through the serial port; if bit 5 is set, echo is suppressed. Nas-Sys 3 also tests bit 1 of the option byte; if this bit is zero, any echo of an input byte by the user program is suppressed. This is done by using bit 7 of the option byte as a "suppression flag". The flag is tested on output to determine whether to transmit a byte or not, and is then reset. Nas-Sys 1 does not use bit 1 of the option byte

The external output routine tests the parity of the byte to be transmitted; if it is odd it inverts bit 7. Bit 0 of the option byte is now tested; if bit 0 is set, this tells the Nascom to transmit in ' odd parity' formaso it re-inverts bit 7. The byte is now sent out through the serial port. Although you can ignore the parity of the received data, you will usually be communicating with a device which tests parity and must therefore conform to its requirements.

For the same reason, a line feed (code $£ 0 \mathrm{~A}$) is output after a carriage return (£OD), as most systems need both signals; however, the line feed can be suppressed by setting bit 4 of the option byte. The Nas-Sys 1 external output routine ignores nulls, but Nas-Sys 3 has been modified so that nulls are output correctly.

The many options available make this a very powerful command. Because the user output routine is automatically brought into operation when the X command is invoked, you can have a parallel printer on line in addition to the Nascom keyboard and an ASCII terminal (for example, a teletype keyboard and printer). Of course, you must set up the user output routine by storing the address at £0C78 in the usual way.

YJUMP Y

In Nas-Sys 1, Y produces an error message - the address in the subroutine table is £030A. Nas-Sys 3 uses Y to jump to £B000; this will normally be used to access software in an EPROM at this address, such as the Basic "Programmer' s Aid' or an entesion to the monitor. I have the initialisation routine for my printer here, so that Y configures the PIO ports, clears the print buffer and resets the printer options.

ZJUMP Z

This command is normally used to ' warm start the Microsoft Basic at £FFFD. Of course, if you haven' t got the Basic in BM you can use the command to access other software by changing the address stored for the Z command. I use it to access Zeap, using Z for a warm start and ZC for a cold start. Because C is a valid hexadecimal number, you can use it as an argument to a command. The software at the start of the command tests the value in the L register; if it is £0C, it does a jump to the cold start address, otherwise it does a warm start. This has two advantages. Firstly, it gives you two commands for the price of one - when you start modifying your software you soon run out of command letters. Secondly, it reduces the chance of performing a cold start when you meant a warm start; it still happens, but not as often. There always seems to be room in the software you are accessing for the extra code needed to test the value of ARG1.

However, there is a snag. I tried the same ystem for Basic, using J for a warm and JC for a cold start. I then found that I couldn' t RUN programs that appeared to CLOAD correctly. On LISTing garbage was displayed. The reason was that the argument C was used as an offset in the Nas-Sys 3 . READ routine used by CLOAD - the program was being read in to an address twelve bytes higher than the correct address.

The solution is simple - after testing the argument the routine should reset ARG1 to zero. Alternatively, you can POKE the value to zero from Basic.

That brings us to the end of the Nas-Sys commands, but there are many more addresses in the subroutine call table - 34 in Nas-Sys 1 and 37 in Nas-Sys 3. These SCALs cannot be accessed directly from the keyboard like the command letters. Many of them correspond to lower case letters, but if you try to enter them as commands you will just get an error message, because the routine which accepts commands test the input character to see if it lies in the range A-Z. Of course they are there to be used in programs.

SCAL MRET DF 5B

This is the normal way to return to the monitor from a program. The routine resets the monitor and user stacks, prints the monitor message (-- NAS-SYS 3 --, or whatever you have substituted) on the screen, restores the byte replaced by any breakpoint that has been set, and then waits for an input. The screen is not cleared, and the monitor message will appear at whatever point the cursor was left by the program - for tidyness you should shift the cursor to the left of the screen by a carriage return if it has been moved. If you want to clear the screen on return to the monitor you can use RST 0 (£C7); this will re-initialise the workspace and clear the screen before jumping to MRET.

SCAL SCALJ DF 5C

This enables you to access any Nas-Sys subroutine by storing the subroutine ' number at ARGC (£0COA). The routine saves the HL, AF and DE registers, picks up the routine number from ARGC, and then jumps to section of code in the subroutine call restart where the call address is calculated from the subroutine number. Of course, any requirements of the normal call must be met if a subroutine is accessed 'indirectly' by SCALJ; for example, to call the READ command via SCALJ you would have to store £52 ("R") at £OCOA, but you would also have to place $£ 52$ at $£ 0 \mathrm{C} 2 \mathrm{~B}$, or the routine would only ' verify' the tape.

SCAL TDEL DF 5D

This routine calls the 'delay £FFrestart, RDEL (RST £38, £FF) 512 times. As each RDEL takes rate 2.7 msec . with a clock rate of 4 Mhz , the total delay in TDEL is 1.38 seconds. Obviously, at 2 Mhz the above times are doubled. Registers A and B are both set to zero on return from this routine.

Page 32

JCAL FFLP DF 5E

This routine sets and then resets output lines in port 0 . On entering the routine the accumulator must have the bits corresponding to the lines to be changed set to one. This data is exclusive ORed with the byte at $£ 0 C 00$, which maps the current state of port 0 , so that only the selected bits are changed, and output to port 0 . The original state of port 0 is then recovered from £0C00 and output to port 0 .

SCAL MFLP DF 5F

This routine changes the state of the tape LED, which is controlled by bit 4 of port 0 . The LED gives an indication that loading or saving of tape data is proceeding, but if a small relay is connected to the output which drives the LED the signal can be more usefully employed to switch the cassette motor on and off through the ' remotesocket. If you don' tuse the signal tcontrol a tape motor, and alternative use is to produce "music' by connecting the LED output to a small 80 Ohm speakr. Notes can be produced by flipping bit 4 at different rates. However, there are two spare output lines on port 0 , bits 2 and 5 , and you can use these to produce sounds by simply adding a simple buffer and loudspeaker. These bits can be flipped by setting the required bit in the accumulator and doing a direct call to £0053 (CD 53 00). Now you are not supposed to use direct calls to Nas-Sys - the whole idea of the subroutine call system is that if changes are made to the monitor software using the monitor does not need to be changed because it does not use absolute addresses. However, providing you realise the full implications of what you are doing, there is no reason why you shouldn' t use a direct all this once. The alternative is to write a short piece of machine code to change the necessary bits of port 0 .

SCAL ARGS DF 60

This routine loads the contents of the ARG!, ARG2 and ARG3 (£0C0C, £OCOE, £OC10) into HL, DE and BC. As noted previously, when a program is entered by the Execute command, the contents of HL, DE and BC are picked up from the Register save area in the monitor workspace, and so you cannot pass arguments entered under E directly to a program, you must recover the values atored at ARG1 - ARG3, and this can most easily be done by means of SCAL ARGS,

In the next article, I shall continue with the subroutine calls, starting with keyboard calls, DF 61 and DF 62

FRUIT MACHINE

By S. C. Allen

This is a machine code 'One Armed Bandit' simulation, which runs under Nas-Sys 1 or Nas-Sys 3 and uses the standard pixel set to draw the symbols on the reels. To start the game enter E4400; after you have read the brief instructions, press 'Return' to play. The game ends when you have lost all your money - unfortunately it doesn't pay out when you win.

4700 C0 4E B7 28 OD 21 AC 4E DD 216708 CD 204732 4710 C0 4E 0606 CD CA 46 FD E1 DD E1 E1 D1 C1 F1 C9 4720 E5 11764 E 011200 ED B0 3287 4E FD 21 7A 4E 4730 OE OC FD 7E 00 E6 1C CB 3F 47 CB 3F 8047 3A 86 4740 4E 80878747 FD 7E 00 E6 $03801100005 F$ CB 475023 CB 12 CB 23 CB 12 CB 23 CB 122133 4C 1906 $4760 \quad 08$ 7E DD 770023 DD 23 10 F7 113800 DD 19 FD 477023 OD 2809 FD 7E 00 E6 0328 B7 18 E2 3 A 874 E 4780 FE 0220 1A 3A 86 4E FE 022013 3A 7A 4E E6 03 479020 OC 3 E 0432874 E 3 E 0832754 E 18 5A 3 A 87
 47BO $4 \mathrm{AE} 18 \quad 45 \mathrm{FE} 01204132 \quad 86$ 47C0 3286 4E FE 032031 AF 3286 4E 21844 LE 1185 47DO 4E 01 OF 00 ED B8 3E FF 3276 4E 3A 79 4E FE FF 47EO 2016 CD 0548 7C E6 OF 21 A5 4B CD 14482176 47FO 4E 060477 3C 2310 FB 011200 D1 2176 4E ED 4800 B0 3A 87 4E C9 2A 73 4E F5 C5 45 OE 29092273 4810 4E C1 F1 C9 3C 3D 28032318 FA 7E C9 DD $219 F$ 4820 4B 3E 2F DD 4E 00 DD 4601 C6 01 ED 42 F2 2948 483009 FD 7700 FD 23 DD 23 4840300603 FD 7E FD FE 30 4850 F2 C9 EF OC 20 2A 2A 20 48604348494 E 4520 2A 2A 487067687420532 E 432 E 4880383129 OD OD 202020 48902061 6E 2069 6E 6974 48A0 6520 6F 6620313030 48B0 205468652063 6F 73 48C0 682067 6F 20697320 48DO 2020202020202020 48DO 49 4E 4E 49 4E 4753 OD 48F0 6C 20202020202020 $4900 \quad 6420 \quad 20202020 \quad 41$ 6C 49104241522020202020 49203070202020202020 4930202020204245 4C 4C 49402020203230702020 $4950 \quad 33 \quad 3070$ OD 20202044 49602020202020202033 497020202020383070 OD 49802020202020202020 49902020202020202020 49A0 $4556524 F 4 E 202020$ 49BO 3070202020202020 49C0 2020202046414345 49D0 2020313030702020 49E0 30307000 C9 EF OC 20 49F0 20202020202020 2A 4AOO 2A OD OD 2020202057 4A10 2066 6C 6173686573 4A20 61 6E 206265206865 4АЗО 2020707265737369 4A40 31 2C $32 \quad 2061$ 6E 6420 4A50 65 6C 642048 4F 4C 44 4A60 2020202020202020 4A70 6F 2066 6C 617368 2E 4A80 2020202020202020 4A90 47452020 2A OD OD 57 4AAO $47 \quad 45 \quad 202069732061$ 4ABO 20 2C $207072 \quad 657373$

DD 23 OD 20 E4 FD 3600 C0 FD 36 FD 20 FD 2310 $46 \quad 5255495420$ 4D 41 $2028436 F 70797269$ 41 6C 6C 65 6E 203139 59 6F 752068617665 6961 6C 20737461 6B 70 2E OD 2020202020 7420 6F 6620656163 20313070 2E OD OD 20 2020202020202057 2020205379 6D 62 6F $\begin{array}{llllll}31 & 73 & 74 & 20 & 26 & 20 \\ 32 & 6 E\end{array}$ 6C 2033 OD 20202020 2020202020202032 20202020333070 OD 2020202020202020 2020202020202020 4F 4C 4C 4152202020 3070202020202020 $202020504 F 554 \mathrm{E} 44$ 2020203330702020 $\begin{array}{llllll}38 & 30 & 70 & \text { OD } 20 & 20 & 43 \\ 48\end{array}$ 2020202020202034 $\begin{array}{lllllll}20 & 20 & 20 & 31 & 35 & 30 & 70\end{array} 0 \mathrm{DD}$ 2020202020202020 2020202020202035 2020202020202020 $2020484 F 4 C 442020$ 6865 6E 2048 4F 4C 44 20726565 6C 732063 6C 64206279 OD 2020 6E 6720 6B 65797320 33 2E 576865 6E 2068 OD $20 \quad 20 \quad 20 \quad 2020 \quad 2020$ 6365617365732074 OD OD 202020202020 2020 2A 2020 4E 5544 6865 6E 2020 4E 5544 6E 6E 6F 75 6E 636564 2061 6E 792020 6B 65

 ght S.C.Allen 19 B1).. You have an initial stak e of 100 p . .
The cost of eac h go is 10p... INNINGS. Symbo 1 1st \& 2n d All 3 . BAR 2 Op 30p. $\begin{array}{cl}\substack{\text { BELL } \\ \text { 20p } \\ 30 p .} & \text { DOLLAR } \\ & 30 p\end{array}$
 FACE
OOp. \%ive HOLD
\%.. When HOLD flashes reels c an be held by. pressing keys 1,2 and 3 . When h eld HOLD.
ceases t
GE flash.... NUD
GE is announced
GE press any ke
$\begin{array}{llllllllllllll}4 A C O & 79 & 20 & 20 & 74 & 6 F & 0 D & 73 & 74 & 6 F & 70 & 20 & 20 & 74 \\ 68 & 65 & 20\end{array}$ 4ADO 20 6E 75646765202063 6F 75 6E 7420 2E 20 4AEO $557365206 B 6579732031202 C 20322061$ 4AFO 6E 642033 OD 74 6F 20 6E 4B00 65 6C 732064 6F 77 6E 20 4B10 7374617274656420 6E 4B20 69 6C 6C 0D 617574 6F 6D 4B30 792063 6F 75 6E 742064 4B40 30 2E 2054 6F 20 6E 7564 4B50 65 6C OD 6D 6F 72652074 4B60 6520707265737320 6B 4B70 6E 2E 00 C9 EF OD 202020 4B80 $5072 \begin{array}{lllllll}75 & 73 & 73 & 20 & 27 & 43 \\ 27\end{array}$ 4B90 7469 6E 7565 2E 2E 2E 00 4BAO OO OA 00010000040808 4BBO $04 \begin{array}{llllllll}14 & 14 & 14 & 14 & 0 A & 04 & 03 & 03\end{array}$
 4BDO 20202048 4F 4C 445749 4BEO 4F 55205749 4E 202020 4BFO 20 4C 4F 534520202020 4COO 202020202020 4E 4541 4 C 10484154204120504954 4C20 $44 \begin{array}{lllllll}47 & 45 & 20 & 20 & 20 & 20 & 20 \\ 20\end{array}$ 4C30 202020 C0 C0 E0 F6 F6 C4 4C40 FF C6 C0 C0 C0 D9 F6 F6 CB 4C50 C0 C0 C0 C0 C0 C0 E4 E4 C0 4C60 F7 C4 C0 C0 C8 FB ED ED DF 4C70 C0 C0 C0 CO C0 C0 C0 CO CO 4C80 E6 C0 C0 C0 D8 FF DB DB FF 4C90 C1 C0 C0 C0 C0 C0 D4 E2 C0 4CA0 D1 C4 C0 C0 C0 D4 C1 C8 E2 4CBO C0 C1 C0 C0 C0 C0 EO C4 C0 4CC0 E2 C0 C0 C0 C8 E0 CA D1 C4 4CDO C8 C2 C0 C0 C0 C0 C0 CO C0 4CE0 C4 C0 C0 C0 D0 C1 D4 E2 C8 4CFO D1 C4 C0 C0 C0 C0 D4 D2 C4 4D00 CO CO C0 CO C0 F8 C0 CO EO 4D10 C1 C0 C0 C0 C0 C0 E0 E4 C0 4D20 C1 C0 C0 C0 C0 F9 C9 C0 C0 4D30 CA C0 C0 C0 C0 C0 C0 CO CO 4D40 C2 C0 C0 C0 C0 FA D2 C0 C0 4D50 D4 C0 C0 C0 C0 C0 F4 F4 C4 4D60 CC C0 C0 C0 C0 DO FC FC DC 4D70 CO CO CO CO CO CO EO EO CO 4D80 D1 C0 C0 C0 C0 E0 F9 F9 F1 4D90 C1 C0 C0 C0 C0 C0 C0 C0 C0 4DA0 E2 C0 C0 C0 C0 C8 FA FA E2 4DB0 CA C0 C0 C0 C0 C0 F4 E6 C0 4DC0 C7 C0 C0 C0 E0 FE FF FF F7 4DDO CO CO C0 CO C0 C0 E0 C4 C0 4DE0 C6 C0 C0 C0 C0 FC FF FF E7 4DF0 C9 C1 C0 C0 C0 C0 C0 C0 C0 4E00 C4 C0 C0 C0 C0 F8 FF FF C7 4 E 10 DB C2 C0 C0 C0 C0 C0 CO C0 4E20 F6 F6 C0 C0 C9 C9 C9 C9 C9 4E30 CO C0 C0 C0 C0 C0 C0 CO CO 4E40 E4 E4 C0 C0 DB DB DB DB DB 4E50 C0 C0 C0 C0 C0 C0 C0 C0 CO 4E60 C0 C0 C0 C0 FF FF FF FF FF 4E70 CO CO CO DA BD 00 OC OD OE
y to.stop the Use keys 1,2 a nd 3 .to nudge re els down. Once started nudges w ill.automaticall y count down to o. To nudge a re el.more than onc e press key agai

. HOLD HOLD
HOLDWIN LINEY OU WIN 0 YOU LOSE UNLUCKY NEARLY W HAT A PITY NU

－ AAA_{4}

Score -a01.40

IHVASSDH EARTH
＊日

［G］

＊＊＊NASCOM 1 －Cottis Blandford cassette interface for N2 format，relinbility it fast load E14．90 －BK RAM required uniess otherwise atated． Pleana state if Nascom TAPE Basic required． ALL PROGRAMS SUPPLIED ON CASSETTE IN CUTS／KANSAS CITY FORMAT
barclaitard
VSA

Pleass add BEp／order P \＆P＋VAT 15% ． Large（ $151 / \mathrm{pp}$ ）Sae for FULL CATALOGUE．

PROGRAM POWER 5．Wensiley Rond． Leeds LS7 2LX．

